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 1. INTRODUCTION 

In 1940, Bruno de Finetti published a paper (“Il problema dei pieni”) that has only recently come to 
the attention of English-speaking economists. The merit goes to Mark Rubinstein, who asked me to 
translate it into English, and to Harry Markowitz, who provided a review of de Finetti’s paper.1 

De Finetti’ paper, which is actually a booklet (it is 88 pages long!), is complex from the very 
beginning, i.e. the title. It could have been translated as the “The Problem of Optimal Retention Lev-
els in Proportional Reinsurance” but the translation would not have been faithful. Since the Italian 
title could have been “Il problema dei pieni assicurativi” (a little more self-explanatory for people 
not acquainted with the jargon of actuaries), I thought that the best way to translate it was “The prob-
lem of full-risk insurances”, which retains the term (“full” for “pieni”) used by de Finetti, although it 
is still cryptic. 

“The problem of full-risk insurances” is an outstanding piece of research. This may help to ex-
plain why Franco Modigliani, when he was awarded the Nobel prize in 1985 (some months after the 
death of Bruno de Finetti and 5 years before Markowitz was awarded his), said he thought de Finetti 
would have deserved the same award. 

As Rubinstein notes, de Finetti’s paper was received for publication in December 1938 in re-
sponse to a competition to determine “the maximum sum that an insurance company can insure re-
taining (full) risk exposure.”2 At that time, the 32-year old Bruno de Finetti was already known as an 
enfant prodige (he was appointed to a chair in Mathematical Analysis when he was only 24 years 
old, thus becoming the youngest university professor in Italy).3  

It is impressive to read the paper now and to find that so many of his ideas are become mile-
stones in financial economics. In particular, on the basis of his 1940 paper, Bruno de Finetti can be 
considered one of the founders of portfolio theory. 

In the first chapter of the paper, Bruno de Finetti: 

 1. anticipated two classical steps in capital allocation. In current jargon, the three-step process of 
capital allocation is made by security analysis (i.e. the input list: mean, variance and covariance 
of returns), portfolio selection (the efficient frontier), utility maximization (the optimal portfo-
lio). What de Finetti called “the problem of relative full-risk insurances” is the problem of port-
folio selection, while what he called “the problem of absolute full-risk insurances” is that of 
utility maximization (the words in square brackets are my addition, here and elsewhere): 

“... the problem of relative full-risk insurances reduces to determining a1, a2, ..., an [the portfolio 
weights] so that, for given G, t [= G/σ] is maximized (i.e. determining the maximum point of t for dif-
ferent levels G = const.). Besides, put more simply, the expression for t shows that, as long as we stay 

                                                        
1 The translation of the first chapter of de Finetti’s article has recently been published in the Journal of Investment Management 
(Joim) [see de Finetti (2006), Markowitz (2006) and Rubinstein (2006) in the References at the end of this paper]. Mark Rubinstein 
“learned about de Finetti’s earlier work from Claudio Albanese, Professor of Mathematical Finance at Imperial College London” 
whom he first met at a Riskwaters Conference in London (November 1-2, 2004). “Claudio, in turn, had learned of this from Fran-
cesco Corielli, Professor of Statistics at Bocconi University, who had learned many of the details concerning de Finetti’s work from 
Flavio Pressacco (who knew de Finetti), now Dean of Economics at the University of Udine”. I gave my translation to Mark Rubin-
stein at the end of January 2005, when I was attending the Masters of Financial Engineering Program at Berkeley, and I received the 
first drafts of the articles by Rubinstein and Markowitz at the end of June 2005. 
2 The author described the content of his paper in a short abstract: “We examine—in its different aspects—the problem of the risk 
due to hedging a set of insurances and, consequently, the problem of the retention levels, i.e., of the most efficient method to rein-
sure a part of such insurances to reduce the risk within the desired limits, while minimizing the loss of profit. The different aspects 
we consider are: the risk within a single accounting period (Chap. I), the risk for the whole existing portfolio (Chap. II), the risk re-
lated to the whole future development of the firm (Chap. III). Some concluding remarks follow (Chap. IV).” 
3 In that period de Finetti started to establish relationships with the most prominent mathematicians, including Andrey Kolmogorov, 
who is mentioned in the paper - together with Paul Lévy and Louis Bachelier - for his studies on continuous and jump stochastic 
processes. In particular, de Finetti refers to a paper written by Kolmogorov in 1932 in which the Russian mathematician answers to 
some questions on homogeneous stochastic processes that de Finetti had put forward. This interesting “correspondence” has been 
published in the Rendiconti of the Accademia dei Lincei. 
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on an iso-level G = const., determining the maximum of t is equivalent to determining the minimum 
of σ, i.e. the minimum of the quadratic form σ2 = ∑ ah

2
 σ̄h

2
 . 

As regards the problem of absolute full-risk insurances, whose solution requires knowledge 
of the function P(t) [the probability of default as a function of the safety degree t], it suffices to estab-
lish the value P' for the probability of default that we consider tolerable, because then, from P(t') = P' 
we can obtain the corresponding value t' of t, and finally, denoting by t(G) the maximum of t on the 
iso-level G, we can determine from t(G') = t' the corresponding value G' of G. Then, the solution of the 
problem of absolute full-risk insurances is that of the problem of the relative full-risk insurances on iso-
level G = G'.” (Joim, p. 23) 

 2. worked out a special case of the Kuhn-Tucker theorem, with upper and lower bounds on vari-
ables but no equality constraints (Joim, p. 24):4 

“... what remains important is to see what is the role played by the constraints 0 ≤ ak ≤ 1, which we have 
not yet considered. It would be easy to see, immediately and directly, even in the case where the constant 
A is not so small as to make all the ah ≤ 1, that the solution is the same as before but now it is necessary 
to set equal to 1 all the ah which would be larger than 1.” 

 3. “worked out an early version of the critical line algorithm, the numerical method used to solve 
the portfolio selection problem”. The critical-line algorithm is described both for the no-
correlation case (Joim, p. 25) and for the correlation case (Joim, p. 30): 

“Geometrically, the line traced is a broken line which links the unit point (1, 1, ..., 1) to the origin (0, 
0, ..., 0). The last segment is the part of the straight line ah = Akh̄/σ̄h

2
 inside the hypercube 0 ≤ ah ≤ 1” 

“Let us now consider the general case in which the risks are instead correlated. It is not difficult to ex-
tend the treatment applied so far to such a case ... The geometric interpretation given for the no-
correlation case still holds, since the line of ‘optimal’ points of σ for given G is a continuous broken 
line which links the starting point (C1̄, C2̄, ..., Cn̄) to the origin (0, 0, ..., 0).” 

 4. was one of the first to emphasize the importance of covariance and correlation in capital alloca-
tion problems: 

“The extension, which seems so obvious to me, of the previous considerations on risk to the case 
of correlated events is almost never discussed in the research on this subject (to be more precise, I 
remember having seen it only in a paper by Dubois ... who however didn’t address the problem of 
full-risk insurances)” (Joim, p. 37) 

 5. showed that he was aware of bounds on negative correlation coefficients (Joim, p. 38) [he re-
fers to another paper (“About correlation”), that he had published in 1937]: 

“... we can always represent n random numbers by n vectors having a modulus equal to their stan-
dard deviations and forming – two by two – an angle whose cosine (in magnitude and sign) is 
measured by the correlation coefficient. Now, n vectors can surely be orthogonal among each other 
(no-correlation case), or can form acute angles (positive correlation), but it is impossible that they 
form angles which are all obtuse (over a certain angle limit). For example, three vectors can form, 
among one another, angles of at most 120°. In general n vectors can form angles whose cosine is at 
most equal to –1/(n– 1). And, therefore, this is the maximum negative correlation coefficient that 
we can simultaneously observe among n random numbers.” 

 6. defined and analyzed the variable t (called the safety degree, Joim p. 26) which corresponds to 
the “Sharpe ratio” when the risk-free interest rates are zero. Besides, in its context, t has the 
meaning of KMV distance to default; 

“... the probability of default will only depend on t [distance to default] and precisely it will be rep-
resented by a decreasing function of t, P(t) that, in particular, is 

                                                        
4 The Kuhn-Tucker conditions are the single most important analytical result in nonlinear programming. For a good illustration see 
Chiang (1974, pp. 704-13). 
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if the distribution is Gaussian.” (Joim, p. 23) 

 7. sketched what can be considered an embryo of Nash equilibrium theory (Joim, p. 41): 
“If we consider several insurers who offer reinsurance to one another and everyone of these be-
haves – when determining the levels of full-risk insurances – in the optimal way suggested by our 
preceding results, that is each one seeks the solution which is the most advantageous for his own 
ends, it cannot taken for granted that they will actually succeed in reaching their aim [This state-
ment is related, as a particular case, to my preceding considerations intended to disprove the fun-
damental principle of a liberal economy, according to which the free play of single egoisms would 
produce a collective “optimum” ...]. Therefore, we will now try to see whether – addressing the 
problem simultaneously, rather than unilaterally, and using the conclusions of such a study to for-
mulate a mutual convention rather than many unilateral decisions – it is possible to establish a dif-
ferent criterion which, for all and everyone, is more advantageous than the one we found before.” 

 2. HISTORICAL NOTE 

Only a few of the 283 works by de Finetti [listed by Daboni (1986)] are not written in Italian: 20 in 
English and 17 in French. Some of them have been translated: 13 into English, 2 into French, and 1 
into German (the German translation refers to an article on the reinsurance problem written by de 
Finetti in 1942). 

After the second world war, de Finetti left Assicurazioni Generali and, as Rubinstein writes in 
his Introduction, “became absorbed by his other work in mathematics”. 

It is not easy to find references to his 1940 paper. An exception is the “Notes on Foreign Actu-
arial Journals” in the Journal of the Institute of Actuaries (1947), which laconically refers to: 

“An algebraical study of the risk problem for a single case, for the whole existing portfolio, and for the 
future of the whole undertaking” 

An important acknowledgement comes from Hans Bühlmann (1970), whose book is reviewed in the 
Transactions of the Society of Actuaries: 

“In Chapter 5, “Retention and Reserves,” Bühlmann discusses the relative and absolute retention limits 
for both proportional and nonproportional reinsurance. In the section on relative retention he gives a 
method of de Finetti from a 1940 Italian paper. Although these ideas appear to be of great use and are 
known widely in Europe, we are indebted to Bühlmann for making them available in English.” 

Bühlmann worked at Swiss Reinsurance Company before taking the chair in actuarial mathematics 
at the Federal Institute of Technology in Zurich. This may explain the reference to de Finetti’s paper 
in the forward to a paper by Swiss Re (2003):5 

“The publication is based on Bruno de Finetti’s work on the establishment of optimal proportional reten-
tions which was published in a 1940 article entitled “Il problema dei pieni”. ... Because de Finetti’s work 
remained virtually unknown outside universities, actuaries and other professionals are still to a large ex-
tent unfamiliar with practicable rules deriving from his observations. For this reason, even readers with 
knowledge of risk theory will also find something new in the following work.” 

De Finetti’s contribution to portfolio theory was also noted by Pressacco (1986): 

                                                        
5 The forward refers to a paper by Hans Schmitter (2003). The publication includes “an Excel file developed by Pamela Hall which 
features tools to determine useable retentions”. See www.swissre.com. 
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“The name of H. Markowitz (1952) is famous all over the world for his mean variance approach to the 
portfolio selection problem, a milestone in the analysis of relevant economic problems under uncertainty. 

It is perhaps surprising to find that more than ten years earlier B. de Finetti (1940) used the same 
approach to study a key problem in proportional reinsurance: the optimal retention problem.” 

and stressed by Daboni and Pressacco (1987): 

“... de Finetti’s paper is to be seen as an early anticipation of H. Markowitz’s (Markowitz, 1952) well 
known two stage mean variance approach to the portfolio selection problem.” 

For historical notes on the genesis of portfolio theory, see Markowitz (1999) and Rubinstein (2002).6 

 3. GEOMETRIC VIEW 

The giant upon whose shoulders de Finetti’s solution to the reinsurance problem stands is a shy and 
modest Italian, born in Turin, and considered the greatest mathematician of the eighteenth century: 
Giuseppe Luigi Lagrangia, better known as Joseph-Louis Lagrange. Even if de Finetti does not men-
tion him, the first step in solving the reinsurance problem was taken by using Lagrange multipliers, 
the powerful tool introduced in 1759 by the 23-year old mathematician.7 

The reinsurance problem studied by de Finetti (1940) is very similar to, but formally different 
from, the portfolio selection problem analyzed by Markowitz (1952). In both problems the goal is to 
minimize the variance of a portfolio’s return, for a given level of expected return, subject to some 
linear constraints (a quadratic programming problem). 

An analytical comparison of the two approaches is shown in the next section. For the time be-
ing it is sufficient to state that Markowitz studies how to select efficient portfolios by investing a unit 
of capital, while de Finetti considers a given portfolio and studies how to revise its weights, by sell-
ing (i.e. reinsuring) some of the securities (i.e. insurance policies), in order to obtain efficient portfo-
lios.8 Therefore, both de Finetti and Markowitz study how to find the optimal weights (a1, a2, ..., an 
in de Finetti’s notation, X1, X2, ..., Xn in Markowitz’s notation) of efficient portfolios. 

Under the hypotheses that we will set out later, the symbol E used by Markowitz to denote the 
portfolio’s expected return is equal to the symbol G used by de Finetti. We are now ready to under-
stand the words (and symbols) used by de Finetti in setting up his reinsurance problem: 

“... the problem of relative full-risk insurances [i.e., the problem of computing the set of mean-variance 
efficient portfolios] reduces to determining [the retention levels] a1, a2, ..., an so that, for a given [ex-
pected return] G, t [= G/σ] is maximized (i.e. determining the maximum point of t for different levels G = 
const.). Besides, put more simply, the expression for t shows that, as long as we stay on an iso-level G = 
const., determining the maximum of t is equivalent to determining the minimum of σ, i.e. the minimum 
of the quadratic form σ2 = ∑ ah

2
 σ̄h

2
 [the no-correlation case]”. (Joim, p. 23) 

Markowitz (2006) approves the de Finetti analysis for the no-correlation case (“For the case of un-
correlated risks, de Finetti solved the problem of computing the set of mean-variance efficient port-
folios.”). Therefore, we could skip this case and focus on correlated risks. However, since it is in-
structive to see how de Finetti solved the problem when risks are not correlated, we will look at the 
geometric solution of the no-correlation case, in two and three dimensions, before examining the 
correlation case. 

                                                        
6 See also Markowitz (1987, pp. 36-40) and Markowitz (2006, pp. 16-7). 
7 See Lagrange (1759). A good description of the Lagrange-multiplier method is in Chiang (1974, pp. 376-9). Bruno de Finetti 
(1937a,b) wrote two articles on free and constrained optimization problems before writing the 1940 paper. 
8 The securities considered by de Finetti are life insurance policies: “... we intend to discuss the question in the case of life insur-
ances (which - because of their intrinsic characteristics - will lead to further considerations) ...”. 
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Uncorrelated Assets 
Two Assets 
Let us consider the numerical example given by Markowitz (2006), where the rates of return of two 
securities have means equal to 1 (μ1 = μ2 = 1) and standard deviations equal to 1 and 2, respectively 
(σ1 = 1, σ2 = 2). Differently from Markowitz, let us initially suppose that the returns are uncorrelated 
(ρ12 = 0). The elements of the problem are reported in Figure 1. 

The portfolio weights cannot be either less than 0 (because policies cannot be over-reinsured) 
or more than 1 (policy re-issue is not allowed). Therefore, a portfolio is legitimate if and only if it 
lies on or in the square BCSL. This area is referred to as the set of legitimate portfolios.9 

The iso-mean lines, i.e. the lines made up of portfolios whose returns have a mean equal to a 
given level E, are represented by straight lines: “... the iso-mean lines form a system of parallel lines, 
with a direction of increasing E ..” [Markowitz (1976), p. 135]. 

The iso-variances curves, i.e. the curves made up of portfolios whose returns have a variance 
equal to a given level V, are represented by ellipses: “All these ellipses have the same center, the 
same orientation, and the same ratio of longest diameter to shortest diameter” [Markowitz (1976), p. 
136]. In the example, the diameters of the ellipses coincide with the axes because the correlation is 
null. The longest diameters lie on the axis for X1, because this is the axis that measures the weight of 
the policy with the lowest variance: for the portfolio to have a certain variance, V, the weight of X1 
needs to be bigger than the weight of X2, the policy with the highest variance. If the variances of the 
two policies were the same, the ellipses would be circles.  

An efficient portfolio is a legitimate portfolio that offers the highest mean, E, for a given vari-
ance, V, as well as the lowest variance, V, for given mean, E. To select efficient portfolios, let us first 
find “the locus of all tangencies between iso-mean lines and iso-variance curves” [Markowitz 
(1976), p. 139]. The line connecting all these points will be called the pure critical line. Since it does 
not take into account the bounds of the variables, it represents the solution to a constrained optimiza-
tion problem. 

                                                        
9 Roy (1952) allows short sales. Therefore, his legitimate set is given by the square ACFG and the critical line is CRH. 

(1,1)

-1.12

-2.24

1

0.5

-0.5

-1

2.2410.5-0.5-1 X 1

X 2

de Finetti's
legitimate set (BCSL)

iso-mean
E  =0.000

iso-mean
E  =1.250

B C

SL

iso-variance
V  =1.250iso-variance

V  =5.000

iso-mean
E  =2.000

critical line (CRL)

R

pure critical line

 
Figure 1   Efficient portfolios in the space {X1, X2}: μ1 = 1, μ2 = 1, σ1 = 1, σ2 = 2, ρ12 = 0.0 
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The solution to the quadratic programming problem is given by the broken line CRL detected 
by Markowitz’s (1956) critical line algorithm (CLA). The points C, R, L are called corner portfolios. 
The construction of the broken line is explained by Markowitz (1974, p. 151) in the following terms: 

“The relationship between critical lines and efficient portfolios can be described by a simple device. 
Imagine the critical lines as railroad tracks. Imagine, further, that a passenger boards a train at X_ [X_ is the 
legitimate portfolio with variance smaller than that of any other portfolio] and travels in the direction of 
increasing expected return. The first time his train crosses another track – as soon as the first critical line 
intersects a second critical line – the passenger transfers to the new track, the new critical line, and again 
travels in the direction of increasing E Again he reaches another track, an intersection of critical lines, 
and again he transfers to the new, continuing in the direction of increasing E. This continues until the 
passenger reaches X̄ with maximum E. There his journey ends. 

Every point through which the traveler passes on his journey represents an efficient portfolio. Con-
versely, every efficient portfolio was reached en route. ...” 

In the critical line algorithm, the direction actually followed by the passenger is reversed. The pas-
senger starts from X̄ and reaches X_. To detect the starting point X̄, i.e. the legitimate portfolio with a 
higher expected return than that of any other portfolio, the CLA solves a linear programming prob-
lem by making use of George Dantzig’s (1951) simplex algorithm. In solving the reinsurance prob-
lem, the simplex method is not needed, since the starting point is known (it is given by the portfolio 
that is fully invested in all the available policies). However, the solution of the reinsurance problem 
will not necessarily represent the set of all the efficient portfolios, i.e. the efficient frontier, since we 
do not know if the initial portfolio is efficient or not. 

The solution traced by the CLA in the space of the portfolio weights {X1, X2} can be projected 
in the space {E, V} or {E, σ} to derive the better known shape of the efficient frontier [Markowitz 
(1974, pp. 152-3)]: 

“As long as our passenger moves along a single critical line, the relationship between expected return 
and variance of return is represented by a parabola ... 

The curve relating efficient standard deviation to efficient expected return has properties similar to 
the curve relating E and V. The chief difference is that the former is principally made of segments of hy-
perbolas rather than parabolas ...” 

The efficient frontier for the example we have examined is reported in Figure 2, where corner portfo-
lios are highlighted by markers, and in Table 1. 
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Figure 2   Efficient frontier 
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Three Assets 
Let us now consider a portfolio with three uncorrelated policies. The rates of return have means equal 
to 1 (μ1 = μ2= μ3 = 1) and standard deviations equal to 1, 2 and 1, respectively (σ1 = σ3 = 1, σ2 = 2). 

Since the variances are not all equal, iso-variances are ellipsoids, i.e. spheres which are 
stretched somewhere and compressed elsewhere. For instance, policies 1 and 3, which have the low-
est variances, must receive more weight for the portfolio’s variance to reach a certain level, V. 
Therefore, the ellipsoid appears stretched along the X1 and X3 axes (Figure 3).10 

                                                        
10 The figure has been rotated clockwise. The rotation angles with respect to the three axes are, respectively, 10°, 59°, and 16°.  

TABLE 1   Efficient portfolios in the space {X1, X2}: μ1 = 1, μ2 = 1, σ1
2
 = 1, σ2

2
 = 4, ρ12 = 0.0 

Function 
V = a0 + a1 E + a2 E2 

Corner portfolio’s 
weights 

Corner 
portfolio 

(#) 

Expected rate 
of return 

(E) 

Standard 
deviation 

( V) 

Lagrange
multiplier

(λE) a0 a1 a2 X1 X2 

1. 2.000 2.236 4.000    1.000 1.000 

2. 1.250 1.118 1.000 5.000 -8.000 4.000 1.000 0.250 

3. 0.000 0.000 0.000 0.000 0.000 0.800 0.000 0.000 

Note: The table shows the output of the VBA portfolio selection program reported in Markowitz and Todd (2000). 

 
TABLE 2   Efficient portfolios in the space {X1, X2, X3}: μ1 = μ2 = μ3 = 1, σ1 = σ3 = 1, σ2 = 2, ρ12 = ρ13 = ρ23 = 0 

Function 
V = a0 + a1 E + a2 E2 

Corner portfolio’s 
weights 

Corner 
portfolio 

(#) 

Expected 
rate of return 

(E) 

Standard 
deviation 

( V) 

Lagrange
multiplier

(λE) a0 a1 a2 X1 X2 X3 

1.000 3.000 2.449 4.000    1.000 1.000 1.000 

2.000 2.250 1.500 1.000 18.000 -16.000 4.000 1.000 0.250 1.000 

3.000 0.000 0.000 0.000 0.000 0.000 0.444 0.000 0.000 0.000 

Note: The table shows the output of the VBA portfolio selection program reported in Markowitz and Todd (2000). 
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Figure 3   Efficient portfolios in the space {X1, X2, X3}: μ1 = μ2 = μ3 = 1, σ1 = σ3 = 1, σ2 = 2, ρ12 = ρ13 = ρ23 = 0 
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Vice versa, policy 1, which has the highest variance, must receive less weight for the portfolio 
variance to reach the same level, V. Therefore, the ellipsoid appears compressed along the X2 axis. 

The set of legitimate portfolios is given by the cube shown in Figure 4. The solution must be 
found in or on the cube. 

What does de Finetti say for the no-correlation case? He describes the solution both analyti-
cally and geometrically (“perhaps the following argument, which allows us to see the path along 
which it is more advantageous to proceed, as we decrease the risk by increasing the reinsurance, will 
be more illuminating”). First of all, he defines the iso-means (hyperplanes) and the iso-variances (el-
lipsoids): 

“... the loci of points with equal G [E] form a system of parallel hyperplanes, while the loci of points with 
equal σ are ellipsoids (concentric, homothetic, centered at the origin and having as principal axes the 
axes a1, ..., an [X1, ..., Xn]).” 

Then, he solves the constrained optimization problem by using Lagrange multipliers: 
“If we do not consider the constraints 0 ≤ ah ≤ 1 [0 ≤ Xi ≤ 1], the solution of the analytical problem is 
given by the straight line (passing through the origin) [the pure critical line] which is the locus of all tan-
gencies between ellipsoids and hyperplanes.” 

Finally (this is the part where he works out a special case of the Kuhn-Tucker theorem), 
“... what remains important is to see what is the role played by the constraints 0 ≤ ak ≤ 1 [0 ≤ Xi ≤ 1], that 
we didn’t yet consider. It would be easy to see, immediately and directly, ... that the solution is the same 
as before but now it is necessary to set equal to 1 all the ah [Xi] which would be larger than 1.” 

In conclusion: 
“Geometrically, the line traced is a broken line which links the unit point (1, 1, ..., 1) to the origin (0, 0, 
..., 0). The last segment is the part of the straight line ah = Akh̄/σ̄h

2
 [the pure critical line Xi = λE μi/σi

2
]] in-

side the hypercube 0 ≤ ah ≤ 1 [0 ≤ Xi ≤ 1] while the other segments are the (orthogonal) projections of 
parts of the same line on the faces with n – 1 , n – 2 , ... , 3 , 2 dimensions, respectively, and finally on 
the edge, as the straight line and the projections exit the hypercube (speaking here in a retrograde sense 
with respect to the preceding description).” 
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Figure 4   The critical line in 3D (no-correlation case) 
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Therefore, the pure critical line is given by the equation Xi = λE μi/σi
2
, where Xi is a function of λE. We 

can now check – for the example we have considered so far – that the last segment of the critical line 
does actually lie on the pure critical line. In Table 2 the λE for the penultimate and ultimate corner 
portfolios is equal to 1 and 0, respectively. By recalling that μ1 = μ2 = μ3 = 1, σ1 = σ3 = 1, σ2 = 2, the 
last segment is uniquely defined by the points (X1 = 1, X2 = 0.25, X3 = 1) and (X1 = 0 , X2 = 0, X3 = 
0), which actually lie on the pure critical line. 

Finally, it is worth noting that, after reaching the penultimate corner portfolio, all the contracts 
must be reinsured in equal proportion, by maintaining the ratio X1 σ1

2
 / μ1 = X2 σ2

2
 / μ2 = X3 σ3

2
 / μ3 = 

λE. 

Four Assets 

To fully understand de Finetti’s safety-degree curve (Figure 1, p. 27 in Joim), which can be consid-
ered his version of the μ vs. σ efficient frontier, it is necessary to remove the hypothesis (made so 
far) that the expected return on the completely reinsured portfolio is null. When we remove this hy-
pothesis, the reinsurance problem is no longer equal to the portfolio selection problem. 

To solve the general reinsurance problem by the critical line algorithm, we have to consider a 
fourth asset, which is just the original portfolio held by the insurer. In the new problem:11 
 1. the expected rate of return on the original portfolio may be different from the sum of the ex-

pected rates of return on the three policies; 
 2. the fourth row and the fourth column of the new variance-covariance matrix must be con-

structed in the way shown in the Appendix (page 26); 
 3. the weight of the fourth asset must always to be equal to 1, while the weights of the first three 

assets must lie in the range between –1 and 0. 
In his Figure 1 de Finetti shows the behavior of the safety degree, E/ V, as a function of λE. Since 
the critical line algorithm starts from λE = +∞ (no reinsurance) to end with λE = 0 (total reinsurance), 
the chart has to be read from right to left if we want to see how the safety degree changes when we 
move from more risky to less risky portfolios. 

Let ν0 and σ0 be, respectively, the mean and standard deviation of the rate of return on the origi-
nal portfolio held by the insurer. Besides, let us suppose we have numbered the policies so that (μ1 / 
σ1) < (μ2 / σ2) < (μ3 / σ3). In other terms, the first contract – the one with the lowest reward-to-
variability ratio (or safety degree) – is the first to be reinsured. 

We have to distinguish between three / four cases that are characterized, respectively, by: 
 1. ν0 > (μ1 + μ2 + μ2), when the insurer earns a positive amount on the completely reinsured port-

folio; 
 2. ν0 = (μ1 + μ2 + μ2), when the insurer breaks even if he completely reinsures his portfolio; 
 3. ν0 < (μ1 + μ2 + μ2), when the insurer sustains a loss if he completely reinsures his portfolio, and: 

 a. (μ1 / σ1) < (ν0 / σ0); 
 b. (μ1 / σ1) > (ν0 / σ0). 

The safety degree charts corresponding to the above hypotheses are reported in Figure 5, which rep-
licates de Finetti’s Figure 1. In Figure 5a the safety degree increases more and more (from right to 
left) as the reinsurance increases. In Figure 5b “the safety degree stops growing from the point where 
all the contracts start to be reinsured” that is when the critical line’s last segment is reached. In 
Figure 5c the safety degree is improved by reinsurance until a certain point, after which it decreases. 
In Figure 5d “the reinsurance – whatever is its method and extent – can only decrease the safety de-
gree”. 

                                                        
11 The proof of the equivalence between the two problems when transaction costs are null is shown in the Appendix (page 26). 
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Correlated Assets 

Two Assets 
Let us now consider two correlated assets, whose rates of return have means μ1 = μ2 = 1 and standard 
deviations σ1 = 1, σ2 = 1.5. The correlation coefficient is ρ12 = 0.6. The geometric solution, reported 
in Figure 6, can be compared with that already shown for the no-correlation case (Figure 1). 

The most striking difference between the two figures is given by the iso-variance curves, whose 
diagonals no longer lie on the main axes. Since the correlation is positive, when the signs of both 
variables are equal (both positive or both negative) the iso-variance curves are closer to the main 
axes than in the case when the signs are different. Positive correlation strengthens the effect of the 
variance of each asset on the portfolio’s variance, thus allowing small weights to produce a given 
level of portfolio variance, but only if the weights have the same sign. 

The reverse is true for negative correlation. Therefore, the orientation of the system of ellipses 
depends on correlation. When correlation is positive, the orientation is negative, and vice versa. 

 
 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 1 2 3 4 5

λE

μ/σ

(a)

μ 1 = μ 2 = μ 3 = 1, ν 0 = 3.5
σ 1 = σ 3 = 1, σ 2 = 2, σ 0 = √6

 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 1 2 3 4 5

λE

μ/σ

μ 1 = μ 2 = μ 3 = 1, ν 0 = 3.0
σ 1 = σ 3 = 1, σ 2 = 2, σ 0 = √6

(b)  

  

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1 2 3 4 5

λE

μ/σ

(c)

μ 1 = μ 2 = μ 3 = 1, ν 0 = 2.5
σ 1 = σ 3 = 1, σ 2 = 2, σ 0 = √6

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.5 1 1.5

λE

μ/σ

μ 1 = μ 2 = μ 3 = 1, ν 0 = 2.5
σ 1 = σ 3 = σ 2 = 1, σ 0 = √3

(d)  
Figure 5   The safety-degree curve 



Par. 3. Geometric View 11 

A notable difference between portfolio selection and reinsurance is that, while in portfolio se-
lection the center of the system of iso-variance ellipses may lie inside or outside the set of legitimate 
portfolios, in reinsurance it always lies on the vertex (0,0, ...,0) of the legitimate set. 

In the reinsurance problem, the minimum-variance portfolio is generally given (except for 
some special cases) by the completely reinsured portfolio, whose variance is null. Instead, in the 
portfolio selection problem the variance of the minimum-variance portfolio may be different from 
zero. “Markowitz had the brilliant insight that, while diversification would reduce risk, it would not 
generally eliminate it.” [Rubinstein (2002, p. 1042]. This depends on covariances but also on the 
budget constraint, which is present in Markowitz’s problem but not in de Finetti’s. 

Let us now give a look at the solution of the reinsurance problem reported in Figure 6. If there 
were no bounds on portfolio weights, all the efficient portfolios would lie on the pure critical line. 
Instead, in the quadratic programming problem à la de Finetti, the solution must be found in the le-
gitimate set represented by the square BCSL. In this case, the efficient portfolios lie on the critical 
line, the broken line CRL. 

Markowitz (2006) shows that the possible paths from (1,1) to (0,0) have one of the five shapes 
reported in Figure 7. The critical lines (a), (b), (d), (e) are made up of 2 segments while the critical 
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Figure 6   Efficient portfolios in the space {X1, X2}: μ1 = 1, μ2 = 1, σ1 = 1, σ2 = 1.5, ρ12 = 0.6 
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line (c) is made up of only one segment (the degenerate case). The critical line’s last segment may 
lie inside the square [Figure 7 (b), (c) and (d)] or on one of its boundaries [Figure 7 (d) and (e)]. 

The pure critical line may or may not pass through the set of legitimate portfolios. By using 
Markowitz’s personification, we could say that the traveler tries to find the shortest route to the pure 
critical line but, since he has to observe the constraints, he does not necessarily reach it. This is an 
important point to which we will return later (Section 5, p. 17). 

Three Assets 

If we extend the analysis to three correlated policies, whose rates of return have means μ1 = μ2 = μ3 = 
1, standard deviations σ1 = σ3 = 1, σ2 = 1.5 and correlation coefficients ρ12 = 0.6, ρ13 = ρ23 = 0, the re-
insurance problem appears as in Figure 8. 

The orientation of the ellipsoid is now negative, when we look at it from the same standpoint of 
Figure 3, because of the positive correlation between the first two policies.12 

As far as the solution of the problem is concerned, de Finetti notes that the extension from un-
correlated to correlated assets is not difficult even if it becomes fairly complex to see the problem 
geometrically:13 

“Let us now consider the general case in which the risks are instead correlated. It is not difficult to ex-
tend the treatment applied so far to such a case, because we only have to take into consideration the cross 
terms in the expression for σ.” 

                                                        
12 In the same way as Figure 3, Figure 8 shows all the iso-mean planes corresponding to the corner portfolios but – to avoid too 
many lines – only the outer iso-variance ellipsoid. 
13 In the following citation, de Finetti changes notation to deal with the number of “dollars” (or other monetary units), Ch, to be re-
tained for each policy, rather than with the fraction, ah, of the policy to be retained. Besides, he refers to the n hyperplanes Kh, whose 
intersection (K1 = K2 = ... = Kn) is the pure critical line. 
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Figure 8   Efficient portfolios in the space {X1, X2, X3}: μ1 = μ2 = μ3 = 1, σ1 = σ3 = 1, σ2 = 1.5, ρ12 = 0.6, ρ13 = ρ23 = 0
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“... the situation becomes fairly complex ... due to the analytical fact that the main axes of the el-
lipsoid σ = const. are not the coordinate axes any longer, and therefore the hyperplanes Kh = const. are 
not parallel to the coordinate hyperplanes. This is not a simple matter of reference that we can get around 
by changing the coordinates, because the reference system for the axes Ch is tied to the intrinsic nature of 
the problem, since the axes constitute the edges of the hypercube of legitimate points. If we try to use 
new axes (the ellipsoid’s main axes) as axes of reference, in order to simplify the expression for σ by 
eliminating the rectangular terms, we pay the price of complicating matters by having to deal with a hy-
percube that is now in an oblique position.” 

Anyway, the solution of the problem is given again by the critical line, the broken line that links the 
unit point (1, 1, ..., 1) [or (C1̄, C2̄, ..., Cn̄), see footnote 13] to the origin (0, 0, ..., 0): 

“The geometric interpretation given for the no-correlation case still holds, since the line of “optimal” 
points of σ for given G is a continuous broken line which links the starting point (C1̄, C2̄, ..., Cn̄) to the 
origin (0, 0, ..., 0).” 

The critical line of our example, observed from three standpoints, is shown as CRLN in Figure 9.14 
When Markowitz (2006, p. 5) states that “De Finetti did not solve [italics in the original] the 

problem of computing mean-variance efficient reinsurance frontiers with correlated risks” he is 
probably referring to the fact that de Finetti (pp. 30-3), before moving on to examine two special 
cases, outlined a general procedure for dealing with correlated risks (observing that “the determina-
tion of the levels of full-risk insurances entails the laborious, though per se elementary, problem of 
solving a system of linear equations.”) but did not work out a neat quadratic programming algorithm. 

                                                        
14 The standpoints are (10°, 59°, 16°), (237°, 180°, 21°) and (13°, 50°, 105°), respectively. 
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 4. ANALYTICAL APPROACH 

We have already pointed out that Markowitz studies how to select efficient portfolios by investing a 
unit of capital, while de Finetti considers a given (possibly inefficient) portfolio and studies how to 
revise its weights, by selling (i.e. reinsuring) some of the securities (i.e. insurance policies), in order 
to obtain efficient portfolios. Therefore, both de Finetti and Markowitz study how to find the optimal 
weights (a1, a2, ..., an in de Finetti’s notation, X1, X2, ..., Xn in Markowitz’s notation) of efficient port-
folios. 

There are two other differences between the de Finetti and Markowitz approaches: 
 1. in the Markowitz model, ri is the rate of return per dollar invested, while in the de Finetti model 

Xh represents the after-reinsurance profit on the retained part of the hth policy, i.e. Xh is meas-
ured in absolute terms (number of “dollars” or other monetary units) rather than in relative 
terms. To make the two approaches comparable, we therefore assume that each policy in the 
initial portfolio has a unit value, so that the whole portfolio of n policies has a value equal to n 
(in de Finetti’s notation, c̄ = n);15 

 2. the problem examined by de Finetti requires the minimization of portfolio variance for a given 
level of expected capital, not expected return. However, if the initial capital, G0, is null (as we 
have generally supposed), the terms return and capital are interchangeable. 

Under the above hypotheses (c̄ = n and G0 = 0), the symbol used by Markowitz for denoting the 
portfolio’s expected return, E, is equal to the symbol used by de Finetti, G. 

In both the problems, the goal is to minimize the portfolio’s variance, V, for a given expected 
rate of return, E = E0. For reasons that will become evident immediately, it is convenient to mini-
mize V/2 instead of V (and this obviously leads to the same solution).16 In other terms, the con-
strained optimization problem is: 
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15 A “translation” of de Finetti’s symbols into those used by Markowitz is reported in the Appendix (p. 27). In particular, the hy-
pothesis that the portfolio of n policies has a value equal to n corresponds, in de Finetti’s notation, to the hypothesis that c̄ = n, 
where c̄ is the portfolio’s expected profit before reinsurance. In fact, in the world with zero risk-free interest rates implicitly assumed 
by de Finetti, the portfolio’s value, n, is equal to the portfolio’s expected profit, c̄. 

We also assume that reinsurance does not entail transaction costs (management expenses in de Finetti’s words). Therefore, 
the expected loss, λh, from reinsuring the quota (1 – ah) of the hth policy is equal to the expected profit, (1 – ah) ch, from retaining the 
quota (1 – ah) of the hth policy. In other terms, λh = ch.  

Initially, for sake of generality, de Finetti had defined ch as a generic function of ah [ch = ch (ah)]. Later, he implicitly assumes 
that ch changes linearly with ah (in particular ch = ahch̄, where ch̄ is the before-reinsurance expected profit on the hth policy). In fact: 

“To express the problem’s solution in explicit form, ... we only have to specify the dependence of G [= ∑ ch if G0 = 
0] on a1, a2, ..., an. ... Ignoring, as we want to do initially, the management expenses caused by the reinsurance, 
such a dependence will simply be linear.” 

16 The division by 2 makes it possible to simplify Equation (4). 
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The first-order conditions for minimizing L are 
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Equation (4) gives the Lagrange multiplier, λE, as 

 
 

),...,2,1(1 ni
μ

σX
λ

i

n

j
ijj

E ==
∑

=

 

(6)

which is equal to 
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Uncorrelated Assets 

When the rates of return are uncorrelated (σiJ = 0 for i ≠ j), Equation (6) becomes 
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We are now ready to look again at a basic paragraph of the 1940 paper for the no-correlation case.17 
In de Finetti’s words (and symbols):18 

“If we do not consider the constraints 0 ≤ ah ≤ 1 [0 ≤ Xi ≤ 1], the solution of the analytical problem is 
given by the straight line (passing through the origin) which is the locus of all tangencies between ellip-
soids and hyperplanes. This straight line can be defined by setting equal to a constant A (constant in rela-
tion to h) [λE (constant in relation to i)] the n ratios of partial derivatives 
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by setting ah = Akh̄/σ̄h

2
 [Xi = λE μi/σi

2
].” 

In the constrained optimization problems, with no (lower or upper) bounds on the variables, the first-
order condition for a maximum or minimum simply requires that the first partial derivatives of the 
Lagrange function with respect to all the variables and the Lagrange multipliers be zero. In the quad-
ratic programming problem the variables’ bounds come into play: 

                                                        
17 In this paragraph, de Finetti speaks to readers acquainted with the method of Lagrange multipliers or with the total-differential 
approach [see Chiang (1974, p. 379)]. Daboni and Pressacco (1987, p. 255) note: “... de Finetti offers a (rather involved) proof ...”.  
18 Note that in the last row, where A is implicitly defined, de Finetti embeds the constant ½ in the constant A. 
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“However, to make this criterion applicable, we need to make the multiplicative constant A [λE] so small 
that no of the ah [Xi] is larger than unity. In other words, we should reinsure all the contracts except for 
the smallest (more precisely: except that – or those – corresponding to the smallest kh̄/σ̄h

2
 ratio [μi/σi

2
 ra-

tio]), that is we should level all the risks on the basis of the smallest one. Since we can exclude – under 
normal conditions arising in practice – that the reinsurance has to be pushed to such a point, what re-
mains important is to see what is the role played by the constraints 0 ≤ ak ≤ 1 [0 ≤ Xi ≤ 1], which we have 
not considered yet. The solution is the same as before but now it is necessary to set equal to 1 all the ah 
[Xi] that would be larger than 1. 

It would be easy to see, immediately and directly, even in the case where the constant A is not so 
small as to make all the ah ≤ 1, that the solution is the same as before but now it is necessary to set equal 
to 1 all the ah that would be larger than 1.” 

In particular, 

“It is clear that the procedure ... reduces to considering the ah [Xi] defined by the relationship ah = Akh̄/σ̄h
2
 

[Xi = λE μi/σi
2
], except that we replace the values that are greater than 1 by ah = 1 [Xi = 1], and to decreas-

ing the constant A [λE] from the value for which all the ah [Xi] are set equal to 1 until they all become 
lower than unity, and then to keep going till they reach zero.” 

Correlated Assets 

At the time he wrote the paper on full-risk insurances, de Finetti was working for the most important 
Italian insurance company (Assicurazioni Generali in Trieste) and was aware of the merits of diver-
sification. However, he was also aware that, during crises, all correlations tend to move towards 1. 

In 1937 he published a paper on “About correlation”, where he presents a “geometric interpre-
tation that helps to make the relationships among mathematical expectations, standard deviations and 
correlation coefficients intuitive”.19  

In the 1940 paper he claims credit for the originality of his arguments on correlated risks: 
“The extension, which seems so obvious to me, of the previous considerations on risk to the case of cor-
related events is almost never discussed in the research on this subject (to be more precise, I remember 
having seen it only in a paper by Dubois ... who however didn’t address the problem of full-risk insur-
ances).” 

In the general case of correlated risks, we have already seen that the first-order conditions for mini-
mizing the Lagrange function, L, are given by the system of equations (4)-(5). In matrix notation, the 
constrained optimization problem is as follows: 

  )'('½minimize 0EXμλCXXL E −−=  (9)

where C is the variance-covariance matrix and μ' is the return vector. The first-order conditions are 
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By solving the system (10) with respect to X, we get the equation for the pure critical line: 

  1'' −= CμλX E  (12)

                                                        
19 Linear combinations of random numbers are interpreted as vectors in an “abstract space” and the correlation coefficient between 
random numbers X and Y is seen as the cosine of the “angle” between the two vectors representing X and Y. 
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In the case of correlated assets, de Finetti changes notation (see footnote 13) and deals with “not-
reinsured capitals”, Ch, instead of portfolio weights, ah (showing his results in absolute terms rather 
than in relative terms). He states that the pure critical line 

“... can be found by equalizing the n linear functions Kh , that is by solving the system of n linear equa-
tions K1(C1 ... Cn) = K2(C1 ... Cn) = ... = Kn(C1 ... Cn) . G(C1 ... Cn) = G = given const.” 

Differently from the case of no correlation, de Finetti does not derive an explicit expression, such as 
(12), for portfolio weights, but simply states that the pure critical line can be found by solving a sys-
tem of linear equations. In other terms, he does not solve the system of linear equations. 

However he does give a “generic outline of the procedure” and identifies some of the properties 
of the solution. In particular, de Finetti points out three differences with respect to the no-correlation 
case: 

 1. “we cannot take for granted that the order K1 , K2 , ... , Kn in which we subsequently meet the con-
tracts to be reinsured is the same order as that in which the K would appear in decreasing order at 
the initial point. Therefore, the determination of such an order is not immediate ex ante.”; 

 2. “it will no longer be true that, along every segment of the broken line, we have to proceed in equal 
proportion to the reinsurance of the different reinsured contracts.”; 

 3. “the levels of full-risk insurances are interdependent, in the sense that the ratio between two full-
risk insurances, which – in the case of no-correlation – depended only on elements of the same in-
surances ... may now be modified by the presence of a third risk or other additional risks, corre-
lated with the first two to a greater or lesser extent.”. 

Before moving on to the analysis of two special cases, de Finetti concludes: 
“It is precisely because of this circumstance [the interdependency] that, as we have seen, the determina-
tion of the levels of full-risk insurances entails the laborious, though per se elementary, problem of solv-
ing a system of linear equations.” 

 5. LAST SEGMENT 

One controversial issue of de Finetti’s paper regards the critical line’s last segment, i.e. the segment 
that leads to the minimum-variance efficient portfolio: 

“While de Finetti does not solve the reinsurance problem with correlated risks, he outlines some of its 
properties. He tells where the efficient set starts; how it traces out a sequence of connected straight line 
segments; and then describes how it ends, i.e., the general location of the last segment of the path. I will 
refer to de Finetti’s statement on the latter matter as ‘de Finetti’s last segment conjecture.’ It is not cor-
rect.” [Markowitz (2006, p. 6)] 

Markowitz (2006) pointed out that – when returns are correlated – the last segment does not neces-
sarily lie on the pure critical line. Instead, de Finetti writes (for the correlation case) that 

“... until we will finally proceed on the last segment inside the hypercube, along the straight line K1 = K2 
= ... = Kn” [in Italian: “... finché finalmente si percorrerà l’ultimo tratto all’interno dell’ipercubo lungo la 
retta K1 = K2 = ... = Kn”] 

There is no doubt that, in the above geometrical representation, de Finetti locates the last segment 
inside the hypercube and along the pure critical line. 

It could be argued that de Finetti’s statement does not implicitly exclude the possibility of the 
last segment lying on the hypercube: 

 1. the adverb “inside” surely rules out the points outside the hypercube but it does not necessarily 
exclude the points on the edges of the hypercube; 

 2. the adverb “along” does not rule out the possibility of the last segment touching the pure criti-
cal line at the origin, through which the pure critical line must always pass. 
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However, the most reasonable justifications seem to be the following:20 
 1. the cases in which all the policies need to be reinsured is unlikely to be important from a prac-

tical standpoint, even if the academic relevance of the last segment (which leads to the risk-free 
portfolio) is undeniable. The following de Finetti’s statement gives support to this interpreta-
tion: 
“... all these equalities would be satisfied only when all the contracts needed to be reinsured, a point that 
is out of the question in practice.” 

 2. even if we were interested in the last segment from a practical standpoint, the circumstances 
under which de Finetti’s statement is not correct are relatively rare. 

We will now review the last point, that is we will examine the cases where the critical line’s last seg-
ment is not located strictly inside the legitimate set but on one of its boundaries. 

The necessary (and sufficient) condition for the last segment to lie on one of the edges of the 
hypercube when n = 2 has been derived by Markowitz (2006). The necessary (but not sufficient) 
condition for n = 3 has been given by Pressacco (2005). A generalization for the case of n-
dimensions has been given by Markowitz (2006, Technical Supplement). 

Markowitz’s 2D Analysis 
Markowitz (2006) shows that, for the case of two correlated assets, the possible shapes of the critical 
line are those reported in Figure 7. 

Figure 7a and Figure 7b show the cases where the last segment lies strictly inside the legitimate 
set, while Figure 7d and Figure 7e show the cases where the last segment lies on one of its boundaries. 

First Segment 
Figure 7c shows a degenerate case, where “both X1 and X2 change from being UP [i.e. Xi = 1.0] at 
(1,1) to being IN [i.e. 0 < Xi < 1.0] on the efficient segment that traverses the interior of the square” 
[Markowitz (2006, p. 10)]. 

Therefore, Figure 7c shows that the first segment of the critical line may lie inside the square 
(hypercube) and not on one of its edges, as reported in the general outline of de Finetti’s procedure: 

“[the] continuous broken line ... moves at first on an edge of the hypercube 0 ≤ ah ≤ 1 ... “  

The degenerate cases could have been ruled out by de Finetti if – in the following sentence – he had 
numbered the contracts by using the symbol “>” instead of the symbol “≥”:21 

“Let us suppose we have numbered the contracts so that σ̄1
2
/k1̄ ≥ σ̄2

2
/k2̄ ≥ ... ≥ σ̄n

2
/kn̄ ...” 

Special Cases 
In the case of correlated assets, it is possible for portfolio variance to become null without the point 
(0, 0) ever being reached. 

If n = 2 and σ1 = σ2, ρ12 = –1, the minimum-variance portfolio is given by the point (1, 1). In 
this case the critical line’s last segment is given by only one point (Figure 10a). 

If n = 2 and σ1 ≠ σ2, ρ12 = –1, the minimum-variance portfolio lies on one of the edges (X1, 1) or 
(1, X2). In this case the critical line’s last segment coincides with the first segment (Figure 10b, c).22 

                                                        
20 See Pressacco (2005). 
21 Generally (and always in the no-correlation case), the strict inequality would have ruled out the possibility of degenerate cases. 
We considered the use of “≥” instead of “>” as a typo. See Appendix, page 28. 
22 For instance, when σ1 =1, σ2 = 2, ρ12 = –1, any portfolio with X1 = 2X2 has zero variance [Markowitz (2006, p. 16)]. In this case, 
the iso-variance ellipse collapses to a straight line. Moreover, when X1 = 1 then X2 = 0.5: this is the end point of the critical line, 
whose shape is similar to that in Figure 10c. 
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Edge Solutions 

Markowitz (2006, p. 9) highlights that 

“... in the de Finetti model with correlated risks, unlike the case with uncorrelated risks, it is possible for 
the last segment to approach the zero portfolio along the edge of the square or along the face or edge of 
the cube or hypercube, rather than through its interior”. 

In particular, he shows that we have an edge solution of the kind shown in Figure 7d if and only if 
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When inequality (13) holds, the insurer has to reinsure the second policy completely before starting 
to reinsure the first.23 

The example considered by Markowitz (μ1 = 1, μ2 = 1, σ1 = 1, σ2 = 2, ρ12 = 0.6) clearly shows 
that when inequality (13) is satisfied for an edge solution 
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the critical line’s last segment lies on the bottom edge of the legitimate square (Figure 11). 

                                                        
23 If μ1 ≥ 0, μ2 ≥ 0 inequality (13) can only be satisfied by positive values of ρ12. 

(b) (c)(a)  
Figure 10   Possible shapes of the critical line in 2D: special cases 
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Figure 11   Efficient portfolios in the space {X1, X2}: μ1 = 1, μ2 = 1, σ1 = 1, σ2 = 2, ρ12 = 0.6 
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Analogously, we have an edge solution of the kind shown in Figure 7e if and only if 
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When μ1 ≥ 0, μ2 ≥ 0, ρ12 = 0, edge solutions are ruled out since inequalities (13) and (15) can never 
hold. 

Internal Solutions 

Markowitz’s proof of (13) is based on the signs of the first-order derivatives of the Lagrange func-
tion with respect to portfolio weights, measured at the point (X1 =1, X2 =0). 

Another approach has been followed by Pressacco (2005), who, by solving (12) for n = 2, ob-
tains the pure critical line as:24 
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Then, by requiring the slope of the pure critical line (16) to be positive, Pressacco derives the inter-
nality condition for the last segment as:25 
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with the implicit assumption that (μ1 / σ1) < (μ2 / σ2).26 
Inequality (17) is “complementary” to inequality (15). When the slope of the pure critical line 

is negative, the reinsurance problem always has an edge solution, as in Figure 11. However, it is not 
true that when the slope of the pure critical line is positive, the reinsurance problem always has an 
internal solution. In other terms, inequality (17) is a necessary but not sufficient condition for an in-
ternal solution. This is due to the fact that, when returns are correlated, the zero-variance portfolio 
can be reached before getting to the origin. 

Pressacco’s 3D Extension 

Pressacco extends his analysis to three dimensions, looking for the conditions necessary to guarantee 
an internal solution to the reinsurance problem. 

By solving (12) for n = 3, it is possible to obtain the pure critical line, X' ≡ [X1 X2 X3], as a func-
tion of λE,27 and the bilateral relationships between X1, X2 and X3, that is the projections of the pure 
critical line on the cube’s faces {X1, X2 | X3 = 0}, {X1, X3 | X2 = 0} and {X2, X3 | X1 = 0}: 

                                                        
24 Equation (16) can be obtained from (12) by noting that 
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25 In his notation, r < z / t, with t = my σx and z = mx σy. To obtain (17), substitute r with ρ12, my σx with μ2 σ1 and mx σy with μ1 σ2. 
26 Inequality (17) has been derived by requiring the slope’s denominator in (17) to be greater than zero. For the slope to be positive, 
the numerator also has to be positive. Therefore, μ2σ1

2
 – μ1σ12 = σ1(μ2σ1 – μ1σ2ρ12) >0 ⇒ μ2σ1 > μ1σ2ρ12 ⇒ ρ12 < (μ2/σ2)/(μ1/σ1). To be 

sure that this inequality is satisfied we have to set (μ1/σ1) < (μ2/σ2), so that the ratio (μ2/σ2)/(μ1/σ1) is greater than 1. 
27 To solve (12) we first calculate C–1 as 
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Pressacco then obtains the internality conditions by requiring the slopes of the above equations to be 
positive. Finally, under the hypothesis that correlations are uniformly positive (ρ12 = ρ13 = ρ23 = ρ) 
and after numbering the policies so that (μ1 / σ1) ≤ (μ2 / σ2) ≤ (μ3 / σ3), he derives the following crite-
rion for guaranteeing the internality of the critical line’s last segment:28 
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The above condition is necessary for the last segment to lie inside the cube and, differently from the 
2D case, it is also sufficient. This depends on the hypothesis that correlations are uniformly positive. 
In such a case the zero-variance portfolios can only be built by giving zero weights to all the policies 
and the critical line always ends at the origin (0, 0, 0). 

Markowitz Generalization 

Markowitz uses the Technical Supplement of his article to generalize the results in n dimensions. He 
proves that the correct “last segment proposition” for the de Finetti model is the following: 

“... as we trace out the set of efficient segments, from that with the highest mean to that with lowest vari-
ance, the first efficient segment we encounter with no UP variables is the last segment [a variable Xi is 
UP if is fixed at 1.0 throughout the segment]. ... once we encounter an efficient segment with no variable 
UP, the segment heads directly towards the risk-free final portfolio.” 

Markowitz adds that  

“If C is nonsingular, then the zero vector is indeed the unique minimum variance efficient portfolio.” 

The hypothesis of non-singularity for C rules out the special cases we have considered in the section 
Special Cases of Markowitz’s 2D Analysis. 

 6. CONCLUSIONS 

In an important 1940 paper on full-risk insurances, Bruno de Finetti tried to find answers to the fol-
lowing question: “How should an insurance company behave in maximizing the profit of a portfolio 
of insurance contracts subject to the constraint given by the risk level it is ready to bear?”. In other 
terms: “Which contracts should it reinsure and to what extent?” This question can also be formulated 
in an equivalent way: “What are the optimal mean-variance weights of the portfolio that allow the 
insurance company to minimize the risk of default subject to the constraint given by the profit level 
it must reach?” 

                                                        
28 The criterion has been corrected for a typo, by substituting the original 1 – ρ with 1 + ρ. 
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Bruno de Finetti gave anticipatory answers to the reinsurance problem, a special case in the 
class of portfolio selection problems. The original contributions of de Finetti have recently been ac-
knowledged by the 1990 Nobel laureate Harry Markowitz, who generously titled a 2006 article as 
“De Finetti Scoops Markowitz”.29 The two authors, de Finetti and Markowitz, did indeed walk un-
knowingly on similar roads at different times. 

De Finetti’s standpoint is partly different from the one used by Markowitz in his classical work 
on portfolio selection. De Finetti deals with a portfolio of n securities (i.e. insurance contracts) where 
the initial weights are all equal to 1 and wishes to find a method to minimize the risk, for a given 
level of return, by reducing (possibly to zero) some weights through pro-rata reinsurance contracts 
“where a certain proportion of over-risky contracts is transferred to the reinsurer”. The aim of 
Markowitz’s approach is to find all the mean-variance efficient portfolios in which to invest a given 
amount of capital, starting from the maximum-expected-return portfolio and ending with the mini-
mum-risk portfolio. 

De Finetti’s reinsurance problem and Markowitz’s portfolio selection problem are special cases 
of a class of models solved by the critical line algorithm (CLA) provided in Markowitz (1956). By 
making use of this algorithm, we tested the controversial issue raised by Markowitz in his 2006 arti-
cle: the critical line’s last segment. 

When he described the geometrical solution of the reinsurance problem for the case of corre-
lated assets, Bruno de Finetti wrote: “... until we will finally proceed on the last segment inside the 
hypercube, along the straight line K1 = K2 = ... = Kn”. The straight line K1 = K2 = ... = Kn, which we 
called the pure critical line, gives the solution of the problem if there are no bounds on portfolio 
weights. In interpreting de Finetti’s words, it seems that the last segment of the efficient set must al-
ways lie on the pure critical line. 

Harry Markowitz highlights that this point is not correct and shows that the correct last-
segment proposition for the de Finetti model is the following: “as we trace out the set of efficient 
segments, from that with the highest mean to that with lowest variance, the first efficient segment we 
encounter with no UP variables is the last segment [a variable Xi is UP if is fixed at 1.0 throughout 
the segment].” In other terms, it does not necessarily holds that the critical line’s last segment has 
always to lie on the pure critical line. It may actually lie on one of the edges of the hypercube. 

Despite the controversy on this point, Markowitz acknowledges the merits of de Finetti’s paper. 
He recognizes that de Finetti solved the problem of computing mean-variance efficient reinsurance 
frontiers for the case of uncorrelated risks and gives him credit for outlining some of the properties 
that characterize the solution of the reinsurance problem with correlated risks. He also acknowledges 
that de Finetti worked out a special case of the Kuhn-Tucker theorem (considered the single most 
important analytical result in nonlinear programming) when there are upper and lower bounds on 
variables but no equality constraints. Finally, he points out that de Finetti’s achievements did not 
benefit from an environment in which “the existence of the Kuhn-Tucker theorem and the success of 
linear programming encouraged a presumption that a neat quadratic programming algorithm existed 
if we persisted in seeking it.” 

                                                        
29 “Harry Markowitz first published his mean-variance portfolio selection theory in 1952, and later, in 1959, published his book 
Portfolio Selection, probably the most important book written in the history of financial economics. It rests firmly at the root of the 
next half century of research”. [Rubinstein (1999), p. 324].  
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APPENDIX 

Notation 
de Finetti  Markowitz 

Xh̄ 
before-reinsurance profit on hth policy 
(h = 1, 2, ..., n) 

 - - 

X ¯ 
portfolio profit before reinsurance 
X ¯ = ∑ Xh̄ 

 - - 

ch̄ 
before-reinsurance expected profit on hth policy 
(expected profit = loading) 

 - - 

c̄ 
portfolio expected profit before reinsurance 
c̄ = ∑ ch̄ 

 - - 

kh̄ loss for the full reinsurance of the hth policy  - - 

G0 initial capital (or available fund)  - - 

Ḡ 
expected capital before reinsurance 
Ḡ = G0 + c̄ 

 - - 

σh̄ standard deviation of Xh̄  - - 

σ̄ standard deviation of X ¯  - - 

t̄  
safety degree before reinsurance 
t̄  = Ḡ/σ̄ 

 - - 

ah 
retention level, i.e. fraction of the hth policy not-
reinsured: 0 ≤ ah ≤ 1 

 Xi 
portfolio’s fraction invested in the ith security 
0 ≤ Xi ≤ 1 (i = 1, 2, ..., n) 

Xh 
after-reinsurance profit on the retained part of hth policy
Xh = ah Xh̄ 

 ri rate of return on the ith security 

X 
portfolio profit after reinsurance 
X = ∑ Xh 

 R 
portfolio rate of return 
R = Σ Xi ri 

ch 
after-reinsurance expected profit on hth policy 
ch = ch̄ – (1 – ah) kh̄ 

 μi expected rate of return on the ith security 

c 
portfolio expected profit after reinsurance 
c = ∑ ch = c̄ – ∑ (1 – ah) kh̄ 

 E portfolio’s expected rate of return 

kh 
expected loss from reinsuring the quota (1 – ah) of the 
hth policy: kh = (1 – ah) kh̄ 

 - - 

G 
expected capital after reinsurance 
G = G0 + c = G0 + c̄ – ∑ (1 – ah) kh̄ = Ḡ – ∑ (1 – ah) kh̄ 

 - - 

σh 
standard deviation of Xh 

σh = ah σh̄ 
 σi standard deviation of ri 

σ2 variance of X  V variance of R 

rjh correlation coefficient between Xj and Xh  ρij correlation coefficient between ri and rj 

A 
Lagrange-multiplier (along any critical line) 
A = (1/2) (∂σ2/∂ah) / (∂G/∂ah)= (1/2) (∂σ2/∂G) 

 λE 
Lagrange-multiplier (along any critical line) 
λE = (1/2) (∂V/∂Xi) / (∂E/∂Xi) = (1/2) (∂V/∂E) 

t 
safety degree after reinsurance 
t = G/σ 

 - - 

Cj¯  “insured capital” (jth policy)  - - 

Cj 
not reinsured capital (jth policy) 
Cj = aj Cj¯  

 - - 

-   L 
Lagrange function 
L = ½ V – λE (E – E0) 

Kh derivative of the Lagrange function wit respect to ah  - - 
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Technical Supplement 

Portfolio Selection vs. Reinsurance 

PORTFOLIO SELECTION 
In the portfolio selection model, an investor 
chooses the fractions X1, X2, ..., Xn invested in 
n securities. He has to minimize the variance 
of returns, V, subject to linear constraints, for 
every expected return, E: 

  CXXV 'minimize =  (a1)

  bAX ≤tosubject  (a2)

  EXμ ='  (a3)

where 

  ],...,,[' 21 nXXXX =  (a4)
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  ]1...11[=A  (a7)

  ][nb =  (a8)

  ]...[' 21 nμμμμ =  (a9)

and V, E are scalars. 
The inequalities in (a2) and (a5) “can be 

cast into the above format by introducing slack 
variables or by separating variables into their 
positive and negative parts.” 

REINSURANCE 
In the reinsurance model, an insurer holds a 
portfolio of n policies and chooses the frac-
tions Y1, Y2, ..., Yn to sell (reinsure). He has to 
minimize the variance of returns, V, subject to 
linear constraints, for every expected return E : 

  YYW Ω'minimize =  (a10)

  cBY ≤tosubject  (a11)

 FYν ='  (a12)

where 
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  ]...[' 021 vvvvv n=  (a18)

and W, F are scalars. 
The inequalities in (a11) and (a14) “can 

be cast into the above format by introducing 
slack variables or by separating variables into 
their positive and negative parts.” 

(Note that bounds (a5) and (a14) make constraints (a2) and (a11) redundant.) 



Appendix 27 

It can be easily checked that the reinsurance problem is equivalent to the portfolio selection problem 
if the two following conditions are met: 
 1. the expected return, νi, that is lost by reinsuring the i th contract is equal to the expected return, 

μi, of the i th security chosen;30 
 2. the expected return, ν0, on the original portfolio of n policies is equal to the sum of the expected 

returns that may be lost by reinsuring all the policies. 
In other terms, the reinsurance problem and the portfolio selection problem are equivalent if reinsur-
ance does not entail transaction costs.  

In fact, the two above conditions are: 
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In this case, the retention level, Zi, defined by 
  ii YZ += 1  (a20)
is equal to the fraction, Xi, invested in the i th security. Therefore, the fraction, Yi, of the i th policy to 
be sold (reinsured) is given by 
  1−= ii XY  (a21)
and the constraint (a14), –1 ≤ Yi ≤ 0, is equal to the constraint (a5), 0 ≤ Xi ≤ 1. 

When (a19) and (a21) apply, constraint (a12) is equal to constraint (a3): 

 

 

∑ ∑∑

∑∑∑

= ==

===

===+−=

+=⎥
⎦

⎤
⎢
⎣

⎡
==

n

i

n

i
ii

n

i
iii

n

i
i

n

i
ii

n

i
in

EXμXμμXμ

μYμYμμμμYνF

1 11

111
21

')1(

...'

 

(a22)

In addition, constraint (a11) is equal to constraint (a2): 
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Finally, objective function (a10) is equal to objective function (a1): 
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30 In de Finetti’s notation, this is equivalent to setting λh = ch.  
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Typos 

In the English translation of the paper, I did not correct the typos I found in the original article. They 
are listed below: 

 1. p. 24, right column, 2nd paragraph, 6th row. Substitute kh̄/σ̄h
2
 with σ̄h

2
/kh̄. 

 2. p. 24, right column, last equation. Substitute 
 ∑∑ −=−= ;2with;2 22

hhhh daσdaσ  
 3. page 25, left column, first 2 rows. Replace the inequality signs ≥ by the strict inequality sign >. 

If σ̄1
2
/k1̄ = σ̄2

2
/k2̄ this means we would have to start by reinsuring the first two contracts, not only 

the first. 
 4. p. 28, left column, first formula. Substitute 
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 5. p. 28, left column, 2nd paragraph, 2nd line. Substitute C̄ with Cj¯  
 6. p. 31, right column, penultimate formula. Substitute 

 
)/(
)/(2:with

)/(
)/(2:

2222

hh

hh
h

hhh

h
h

hh Ck
CσC

a
G

a
σ

Ck
CσC

a
G

a
σ

=
∂
∂

∂
∂

=
∂
∂

∂
∂

 
and 

 
∑∑ ++

)()(

/
)/)(/(

2with
/

)/)(/(
2 h

j
hh

hhjj
jhj

h
j

hh

hjj
jhj Ck

CσCσ
rC

Ck
CσCσ

rC
 

 7. p. 31, right column, last formula. Substitute 
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