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Abstract 
 
Game-theoretic solution concepts such as Nash 
equilibrium are commonly used to model strategic 
behavior in terms of precise probability distributions over 
outcomes.  However, there are many potential sources of 
imprecision in beliefs about the outcome of a game:  
incomplete knowledge of payoff functions, non-
uniqueness of equilibria, heterogeneity of prior 
probabilities, unobservable background risk, and 
distortions of revealed beliefs due to risk aversion, 
among others. This paper presents a unified approach for 
dealing with these issues, in which the typical solution of 
a game is a convex set of probability distributions that, 
unlike Nash equilibria, may be correlated between 
players.  In the most general case, where players are risk 
averse, the probabilities do not represent beliefs alone. 
Rather they must be interpreted as products of subjective 
probabilities and relative marginal utilities for money.  
 
Keywords:  coherence, previsions, lower and upper 
probabilities, correlated equilibrium, risk neutral 
probabilities, risk neutral equilibrium 
  
1   Introduction 
 
Game theory occupies the increasingly large middle 
ground of rational choice theory:   the problem of  “2, 3, 
4… bodies” in which agents must reason about the 
strategic behavior of other rational agents as well as 
reflect on their own preferences and compete in markets.   
The modeling of interactive decisions of this kind 
requires some special tools and assumptions.   First, the 
rules of the game are (in the most general case) 
parameterized in units of utility rather than money or 
goods in order to allow for differences in tastes and 
attitudes toward risk.  Second, the utility functions of 
different players are assumed to be common knowledge, 
enabling them to model each other’s decisions as well as 
their own, and to all know that they can all do this, and 
so on.  Third, common knowledge of rationality and 
common knowledge of the rules of the game are assumed 

to lead to an equilibrium, usually a Nash equilibrium or 
one of its refinements or extensions, in which the 
decision of each player is individually rational given the 
decisions simultaneously made by the other players, and 
randomization (if any) is performed independently.  And 
fourth, when there is uncertainty about any of the game 
parameters, the beliefs of the players are assumed to be 
consistent with a common prior distribution, which 
generates an infinite hierarchy of mutually consistent 
reciprocal beliefs.  In applications these assumptions are 
usually applied at maximum strength in order to tightly 
(often uniquely) constrain the solution, yet all of them 
are open to question.   This paper will pursue some of 
these questions and show how they lead to solutions that 
are characterized by exactly the same rationality 
conditions as individual decisions and competitive 
markets.  Their common priors and equilibria are 
generally expressed in terms of imprecise probabilities 
that need not satisfy an independence condition and do 
not always represent the players’ true subjective beliefs. 
 
The approach to modeling games that will be used in this 
paper follows that of Nau and McCardle (1990) and Nau 
(1992), which is just a multi-player extension of de 
Finetti’s operational approach to defining subjective 
probabilities, which in turn is a microcosm of a financial 
market.   It lends itself naturally to modeling imprecise 
probabilities; in fact, its behavioral primitives are 
assertions of lower and upper bounds on probabilities 
and expectations 
 
2   Imprecise subjective probabilities 
 
Virtually all of the fundamental theorems of rational 
choice theory—subjective probability, expected utility, 
subjective expected utility, asset pricing, welfare 
economics, cardinal utilitarianism, and non-cooperative 
games—are duality theorems that can be proved by using 
a separating hyperplane argument.  In the versions of 
these theorems that involve finite sets of states and/or 
consequences, it is a variant of Farkas’ lemma, the basis 
of the duality theorem of linear programming: 



LEMMA 1:  For any matrix G, either there exists a non-
negative vector α such that α ∑ G < 0 or else there exists 
a non-negative vector π such that G π ≥  0, π ≠ 0. 
 
LEMMA 2:  For any matrix G, either there exists a non-
negative vector α such that α ∑ G ≤ 0 and [α ∑ G]k < 0 or 
else there exists a non-negative vector π, with πk > 0, 
such that G π ≥  0. 
 
De Finetti’s (1974) “fundamental theorem of 
probability,” as it applies to imprecise probabilities and 
expectations, can be proved as follows, using the 
language of financial markets.  Consider an agent (“she”) 
who is uncertain about which element of a finite set S of 
states of the world will occur.  Let N denote the number 
of states and let x denote an asset, which is an N-vector 
of payoffs assigned to states.  The agent’s lower 
prevision for  x is the price P(x) that she is publicly 
willing to pay per unit of x in arbitrary (but small) 
quantities chosen by someone else.  This means that for 
any small positive number α chosen by an observer 
(“he”), the agent will accept a bet whose payoff vector 
for her is  α(x − P(x)), with the opposite payoffs to the 
observer.1  For example, if N=3, x = (3, 1, −2), and P(x) 
= 1.4, the agent will accept a bet whose payoff vector for 
her is (1.6α, −0.4α, −3.4α) for any small positive α 
chosen by the observer.  A lower prevision for an asset 
may be considered as a lower expectation, i.e., a lower 
bound on its subjective expected value for the agent.   In 
the special case where x is a binary vector that is the 
indicator of an event, its prevision is a lower probability 
for the event.   
 
Lower previsions can also be assessed conditionally.  If x 
is the payoff vector of an asset and e is the indicator 
vector of an event, the agent’s conditional lower 
prevision for x given e is the price P(x|e) that she is 
publicly willing to pay per unit of x in arbitrary (but 
small) multiples chosen by an observer, subject to the 
condition that the bet will be called off if e does not 
occur.  This means that the agent will agree to accept a 
bet whose payoff vector for her is  α(x − P(x|e))e, for 

                                                           
1 Notational conventions:  Lower-case boldface letters such as x and  e  
are used interchangeably for payoff vectors of assets and indicator 
vectors of events as well as for their proper names (e.g., “event e” is the 
event whose indicator vector is e). In the expression α(x − P(x)), x is a 
vector and α and P(x) are scalars, and the multiplication and 
subtraction are performed pointwise, yielding a vector whose nth 
element is α(xn − P(x)).  If x and y are vectors of the same length, then 
xy denotes their pointwise product (another vector of the same length), 
and x ∏ y denotes their inner product (a scalar).  If G is a matrix and x 
and y  are vectors of appropriate length, then x ∏ G and G y denote 
matrix multiplication of G by x on the left or by y on the right, yielding 
vectors.  If π is a probability distribution on states and x is a payoff 
vector and e is an indicator vector for an event, then Pπ(x) is the 
corresponding expected value of x and Pπ(e) is the probability of e, i.,e.  
Pπ(x) = π  ∏ x and Pπ(e) = π  ∏ e.  Pπ(x|e) denotes the conditional 
expectation of x given the occurrence of e that is determined by π, i.e, 
Pπ(x|e) = Pπ(xe)/Pπ(e) provided that Pπ(e) > 0. 

any small positive α.  To continue the previous example, 
if e = (1, 1, 0), i.e., the indicator for the event in which 
either state 1 or state 2 occurs, and P(x|e) = 2.1, the agent 
will accept a bet whose payoff vector for her is (0.9α, 
−1.1α, 0).  In the special case where P(x|e) = 0, the agent 
is willing to pay zero for x conditional on e, i.e.,  she will 
accept a small bet whose payoff vector is proportional to 
x conditional on the occurrence of e.  This is equivalent 
to an unconditional bet with payoffs proportional to xe. 
 
It remains to show that rational lower previsions satisfy 
the laws that ought to be satisfied by lower bounds on 
probabilities and expectations.  Suppose that the agent 
assigns a conditional lower prevision P(xm|em) to asset xm 
given the occurrence of event em, m = 1,…, M, subject to 
the further requirement that  bets on different events are 
additive, which is the way a bookmaker or financial 
market normally operates.  For example, if the agent 
simultaneously assigns lower previsions P(x1|e1) and 
P(x2|e2) to asset x1 conditional on event e1 and asset x2 
conditional on event e2, this means that for any positive 
real numbers α1 and α2 chosen by the observer, she will 
accept a bet whose payoff for her in state n is  
α1(x1n − P(x1|e1))e1n + α2(x2n − P(x2|e2))e2n, where xmn and 
emn denote the values of xm and em in state n for m = 1, 2. 
 
The agent is rational ex ante if her previsions do not 
expose her to arbitrage, i.e., if the opponent is not able to 
make a riskless profit through a clever combination of 
bets.  She is rational ex post in state k if they do not allow 
the opponent to earn a riskless profit if state k occurs.  
These rationality conditions are called “coherence” and 
“ex post coherence,” respectively.  More precisely: 
 
DEFINITION:  The conditional lower previsions 
{P(x1|e1), …, P(xM|eM)} are coherent if  there do not exist 
non-negative numbers {α1, …, αM} such that 

1
( ( | )) 0  αM

m mn m m mnm
x P e n

=
− < ∀∑ x e , i.e., the payoff to 

the agent is strictly negative in all states.  They are ex 
post coherent in state k if and only if there do not exist 
non-negative numbers {α1, …, αM} such that 

1
( ( | ) 0  αM

m mn m m mnm
x P e n

=
− ≤ ∀∑ x e  with strict inequality 

when n = k, i.e., the agent’s payoff is surely non-positive 
and strictly negative in state k.  
  
Coherence entails ex post coherence in at least one state.  
 
THEOREM 1 (de Finetti and others): The conditional 
lower previsions {P(x1|e1), …, P(xM|eM)} are coherent 
[ex post coherent in state k] if and only if there exists a 
non-empty convex set ÷ of probability distributions on 
states of the world [satisfying πk > 0] such that, for all m 
and all π œ ÷,  Pπ(xm|em)  ≥  P(xm|em)  or else Pπ(em) = 0. 
 
Proof:  Let G denote the matrix whose mth row is the 
vector (xm − P (xm|em))em of payoffs to the agent for the 



conditional bet determined by the assignment of 
prevision P (xm|em)  to asset xm conditional on event em.   
The conditional lower previsions {P(x1|e1),…, P(xM|eM)} 
are coherent if and only if there does not a exist non-
negative vector α such that α ∑ G < 0.  By Lemma 1, this 
is true if and only there exists a non-negative vector π 
such that G  π ≥ 0,  π ≠ 0, which can be normalized so that 
its elements sum to 1, a probability distribution.  The 
condition  G π ≥ 0 means Pπ((xm − P(xm|em))em) ≥ 0, or 
equivalently Pπ(xmem) ≥ P(xm|em))Pπ(em), for all m.  This 
is trivially true if Pπ(em) = 0, because both sides are zero.  
If Pπ(em) > 0, it rearranges to Pπ(xmem)/Pπ(em) ≥ P(xm|em), 
which by definition means Pπ(xm|em) ≥ P(xm|em).  The 
corresponding result for ex post coherence in state k 
follows by applying Lemma 2 in place of Lemma 1.  É 
 
Coherent lower previsions therefore have the properties 
of lower probabilities and expectations determined by a 
convex set of probability distributions, which can be 
interpreted to represent the possibly-imprecise beliefs of 
the agent, if she has linear utility for money. 
 
An under-appreciated property of de Finetti’s operational 
definition of subjective probabilities and expectations is 
that it does not merely define them:  it makes them 
common knowledge in the everyday specular sense of 
the term.  The prices are visible to both actors in the 
scene, and the actors both know it, and both know that 
they both know it, and so on, and the meaning of the 
numbers is commonly understood by virtue of the 
opportunities that they create for reciprocal financial 
transactions.  This is a property of posted prices in 
general.  They do not only simplify the decision-making 
of consumers and investors:  they are also credible and 
commonly known numerical measurements of the 
comparative beliefs and values of those who post them. 
 
It might be argued that game-theoretic techniques should 
be used to address the question of why and how the agent 
should offer distinct lower and upper previsions (bid and 
ask prices) in her interaction with the observer, or 
whether she should offer to bet at all.  There might be 
asymmetric information or incentives for secrecy or 
deception or speculation that would motivate the agent to 
set her bid prices for assets at levels other than her true 
lower bounds on their expected payoffs, whatever “true” 
might mean.  This would merely beg the question of how 
the rules of the higher-order game would come to be 
commonly known in numerical terms.  If an infinite 
regress is to be avoided, then at some level of description 
the amount of private information about her beliefs and 
values that an agent is willing to publicly reveal is a 
behavioral primitive.  In the sequel, the game-theoretic 
argument will be turned on its head:  the fundamental 
theorem of non-cooperative games is merely an 
extension of the fundamental theorem of probability to 
multiple actors in the same scene. 
 

3 Previsions conditioned on one’s own moves 
 
In the assessment of previsions via offers to bet, there is 
no requirement that states of the world should be events 
that are beyond the agent’s control.  However, an 
observer might be reluctant to take the other side of any 
bet whose payoff depends on an event that they both 
know the agent does control, and by the same token, the 
agent might be reluctant to offer to bet on events that she 
knows to be controlled by others.  An important special 
case is one in which the state space can be partitioned as 
S = S1 ×  S2, where S1 is a set of events that the agent 
controls (her own moves) while S2 is a set of events 
outside her control (moves of nature or other agents).  If 
e is an event that is measurable with respect to S1 (the 
indicator for a move or subset of moves of the agent), 
and x is the payoff vector of an asset that is measurable 
with respect to S2 (a bet whose payoff depends only on 
moves of others), it might be reasonable for the agent to 
assert a lower prevision for x conditional on e.   If she 
asserts that P(x|e) = 0, it means that she will accept a 
small bet whose payoff vector is proportional to x under 
the same conditions in which she would choose the move 
e, or equivalently, she will accept a small bet whose 
payoff vector is proportional to xe.  Such a bet reveals 
some information about the agent’s payoff function in 
the game she is playing against nature or her adversaries, 
without necessarily revealing the move she intends to 
make.  Namely, her payoffs in the game are such that her 
best move is e only under conditions where her prevision 
for x is non-negative. This method for revealing limited 
information about one’s payoff function yields enough 
detail about the rules of a non-cooperative game to 
determine its equilibria, as will be shown next. 
 
4   Imprecise equilibria of games 
 
Let G denote a non-cooperative game among I players, 
each having a finite set of strategies.  Let S = S1 ×…× SI 
denote the set of outcomes, where Si  is the set of index 
numbers for strategies of player i.  Let s = (s1, …, sI) 
denote a particular outcome, in which si is the strategy 
chosen by player i.  Let xi denote the payoff function (an 
|S|-dimensional vector) for player i, whose value in 
outcome s is xi(s).  Assume that payoffs are measured in 
units of a common money and that the players are risk 
neutral.  (The risk neutrality assumption will be relaxed 
later.)  The “true” game G is therefore defined by the sets 
of strategies {Si} and payoff vectors {xi}. 
 
Let eij denote the event in which player i plays her jth 
strategy, and for every j œ Si, let xij denote a vector of 
payoffs that is obtained from xi as follows:  xij(s) = xi(s1, 
…, j, …, sN), where the j occurs in the ith position.  In 
other words, xij(s) is the profile of payoffs that player i 
receives by playing her jth strategy while all other players 
play according to s.  Note that there is some duplication 



of information in the structure of xij(s):  it contains 
multiple copies of the payoff profile that player i obtains 
by playing j, because the element of xij(s) in coordinate 
(s1, …, si, …, sN) is the same for all values of si.   
 
Suppose that the payoff functions {xi} are not commonly 
known a priori and must therefore be revealed through 
some credible language of communication.  The 
language that will be used here is the same one that was 
sketched in the previous section.  To see how it works in 
the game, observe that in the event that player i chooses 
her jth strategy, she must weakly prefer the profile of 
payoffs she gets by playing strategy j to the profile of 
payoffs she would have gotten by playing any other 
strategy k.  In the terms introduced above, she evidently 
prefers xij over xik in the event that eij occurs, which 
means that she would trade xik for xij conditional on eij. 
Such a trade is equivalent to an unconditional bet with a 
payoff vector of (xij − xik)eij.  If the agent wants to let this 
information about her payoff function become common 
knowledge, she can publicly offer to accept a small bet 
whose payoff vector is proportional to (xij − xik)eij at the 
discretion of an observer.  Or, to turn the story around, if 
by magic her payoff function xi is already common 
knowledge, then it is also common knowledge that she 
will accept such a bet.2  Note that she is not betting 
directly on her own strategy.  Rather, her own strategy is 
used as a conditioning event for bets on what other 
players will do.  Bets that are conditioned on the player’s 
own strategy, which may be uncertain to the observer 
and the other players, do not necessarily reveal her actual 
state of information or her intended move. 
 
Suppose that all the players offer to accept small 
conditional bets that are determined by their true payoff 
functions in the manner described above.  Let G denote 
the matrix whose columns are indexed by outcomes of 
the game, whose rows are indexed by ijk, and whose ijkth 
row is (xij − xik)eij, the payoff vector of the bet that is 
acceptable to player i in the event that she chooses 
strategy j in preference to strategy k. Then, under the 
assumption that such bets may be non-negatively linearly 
combined, an observer of the game may choose a non-
negative vector of multipliers α to construct an 
acceptable bet that yields a total payoff vector of α ∑ G to 
the players, with the opposite total payoffs to himself.    
 
G will be henceforth called the “revealed rules of the 
game matrix” because, as will be shown, it contains all 
the commonly-knowable information about the rules that 
                                                           
2 Strictly speaking, the choice of strategy j in the presence of k can only 
be interpreted to mean a preference for j over k if the agent has 
complete preferences, requiring precise beliefs.  Here, offers to bet are 
assumed to occur at a point in time when the agents may not yet have 
formed precise beliefs about what their opponents will do, but they 
expect that they will have done so by the time they are called upon to 
move.  In the meantime they are making assertions about constraints 
that precise beliefs would have to satisfy in order for them to prefer one 
strategy over another, thereby partially revealing their payoff functions. 

is actually used in determining the equilibria of non-
cooperative games.  However, G does not contain all the 
information about the true game G that is economically 
important to the players.  In particular, it does not reveal 
the benefits that a given player might obtain from 
changes in the strategies of the other players, holding her 
own strategy fixed. The latter information is subtracted 
out when the calculation (xij − xik)eij is performed.  All 
that remains is information about how a given player 
would benefit by changing her own strategy, holding the 
strategies of the other players fixed.  This is the essence 
of “non-cooperative” game-playing.  The players do not 
consider the implications of their own play for the 
payoffs of other players, nor do they expect the other 
players to show that consideration to them. 
 
Under the assumptions given above, we can define what 
it means for the game to be played rationally by applying 
the concept of ex post coherence jointly to all the players.  
Consider an observer who knows nothing about the game 
except the bets that the players have offered, which is the 
minimal information about the game’s rules that is 
common knowledge.  Suppose that he does not want to 
speculate on the game’s outcome, but he would like to 
make a riskless profit if possible.  From the observer’s 
perspective, if several bets are placed on the same table 
at the same time, it doesn’t matter if they are offered by 
one individual or by many who are all looking each other 
in the eye.  If the observer manages to pick their pockets, 
the players have behaved irrationally as a group. 
 
DEFINITION:  The strategy s is jointly coherent if there 
does not exist a non-negative α such that α ∑ G ≤ 0 and 
[α ∑ G](s) < 0, i.e., if, under the revealed rules of the 
game, there is no system of system of bets under which 
the observer cannot lose and will win a positive amount 
from the players if they play  s.    
 
Fortunately for the players, there is always at least one 
jointly coherent strategy: they are not doomed to 
exploitation if they honestly reveal some information 
about their payoff functions.3  The interesting question is 
whether there are strategies that are not jointly coherent, 
and if so, how are they characterized. 
 
In general, the players might choose either pure or 
randomized strategies, and randomized strategies might 
be either independent or correlated. Correlated 
randomization of strategies could be carried out with the 
help of a mediator but does not necessarily require it:  
flipping a coin or playing paper-scissors-rock are familiar 

                                                           
3 A  proof of this result is given in Nau and McCardle (1990).  A proof 
of the dual condition, which (by Theorem 2) is the existence of a 
correlated equilibrium, is given by Hart and Schmeidler (1989).  These 
proofs are more elementary than the proof of existence of a Nash 
equilibrium insofar as they do not invoke a fixed-point theorem.  In 
Nau and McCardle’s proof, the result follows from the existence of a 
stationary distribution of a Markov chain. 



correlation devices that do not require a mediator, and a 
taking-turns convention in repeated play could be viewed 
as a correlation device from the perspective of an 
observer who doesn’t who whose turn it is.  Let π denote 
a (possibly-degenerate) probability distribution over the 
outcomes of the game, and suppose, hypothetically, that 
the players do employ a mediator who is instructed to 
randomly draw a joint strategy s according to the 
distribution π and then privately recommend to each 
player that she should play her own part of it.  Thus, 
player i hears only her own recommended strategy, si, 
not those of the other players.  Under these conditions, π 
is a common prior distribution over recommended joint 
strategies in the game, and each player can use Bayesian 
updating to compute a posterior distribution for the 
recommendations that were received by the other 
players, given her own recommendation.  If each player’s 
recommended strategy is optimal for her a posteriori 
when the others play their own recommended strategies, 
then π is a correlated equilibrium of the game (Aumann 
1974, 1987).    More precisely: 
 
DEFINITION:  π is a correlated equilibrium of G if and 
only if G π ≥ 0, which means that for every player i and 
every recommended strategy j and alternative strategy k 
of that player, either Pπ(eij) = 0 (the probability of 
strategy j being recommended to player i is zero) or else 
Pπ(xij(s) − xik(s)|eij) ≥ 0 (the conditional expected payoff 
of strategy j is greater than or equal to the conditional 
expected payoff of strategy k when j is recommended).   
 
Because the set of all correlated equilibria of G is 
determined by a system of linear inequalities, it is a 
convex polytope—a tractable geometrical object—which 
will henceforth be denoted by ÷G.  A Nash equilibrium is 
a special case of a correlated equilibrium in which π is 
independent between players, allowing each player to 
perform her own randomization (if necessary) without a 
mediator.  The set of Nash equilibria is not necessarily 
convex or connected or bounded by points with rational 
coordinates, and it can be rather difficult to compute, 
particularly in games with more than 2 players. 
 
In these terms we can prove a “fundamental theory of 
non-cooperative games” which is the strategic 
generalization of the fundamental theorem of probability.  
Actually, the theorem and its proof are merely a 
restatement of the fundamental theorem of probability 
and its proof for the special case in which conditional 
previsions are jointly announced by two or more 
individuals and the assets and conditioning events to 
which they refer have a special structure that is 
determined by a non-cooperative game they are playing. 
 
THEOREM 2 (Nau and McCardle 1990):  In a game 
among risk neutral players, a strategy is jointly coherent 
if and only if there exists a correlated equilibrium in 
which it has positive probability. 

Proof:  By Lemma 2, either there exists a non-negative 
vector α such that α ∑ G ≤ 0 and [α ∑ G](s) < 0 or else 
there exists a non-negative vector π, with π(s) > 0, such 
that G  π  ≥  0.   É 
 
Hence, the players are rational ex post if and only if they 
behave as if they had implemented a correlated 
equilibrium, i.e., if they play a strategy that could have 
occurred with positive probability in such an 
equilibrium.4  But even more can be said: lower and 
upper bounds can be placed on the players’ jointly-held 
previsions for outcomes of the game and any side bets 
that might be placed on it, namely the bounds that are 
determined by the convex polytope ÷G of correlated 
equilibria.  On this basis it is appropriate to consider ÷G 
to be the rational “solution” of the game when it is 
played non-cooperatively in the absence of any 
constraints other than coherence, and in general it is a 
solution in terms of imprecise probabilities.5 
 
A canonical example of a game in which a non-Nash 
correlated equilibrium is an attractive strategy is the 
coordination game known as “battle-of-the-sexes,” one 
version of which has the following payoff matrix: 
 

 Left Right 
Top 2, 1 0, 0 

Bottom 0, 0 1, 2 
 
The players would prefer to coordinate on either TL or 
BR as the solution, but Row has a slight preference for 
TL and Column has a slight preference for BR.    The 
corresponding rules-of-the-game matrix, G, is  
 

 TL TR BL BR 
1TB 2 -1 0 0 
1BT 0 0 -2 1 
2LR 1 0 -2 0 
2RL 0 -1 0 2 

  
The row label 1TB means G1TB , the payoff vector of the 
bet for player 1 choosing Top in preference to Bottom, 
etc.  The correlated equilibrium polytope is a hexahedron 
with 5 vertices, of which 3 are Nash equilibria: 

                                                           
4 In games of incomplete information, joint coherence leads to a 
correlated generalization of Bayesian equilibrium (Nau 1992). 
5 This approach can be generalized to the situation in which players do 
not exactly know their own payoffs.  If each payoff in the game matrix 
is known by its recipient only to lie within some interval, then the ijkth 
row of G becomes (xij

max − xik
min)eij, where xij

max and xik
min

 are pointwise 
maxima and minima of the possible payoffs of strategies j and k for 
player i. This means that in the event that player i chooses strategy j 
over strategy k, the minimal requirement that her conditional beliefs 
must satisfy is that her best possible lower prevision for the payoff of  j 
should be at least as great as her worst possible lower prevision for the 
payoff of k.  In general, this sort of payoff-imprecision weakens the 
constraints and therefore enlarges the set of correlated equilibria. 



 
 TL TR BL BR Nash? 

Vertex 1 1 0 0 0 Yes 
Vertex 2 0 0 0 1 Yes 
Vertex 3 2/9 4/9 1/9 2/9 Yes 
Vertex 4 2/5 0 1/5 2/5 No 
Vertex 5 1/4 1/2 0 1/4 No 

Two views of the geometry of the correlated equilibrium 
polytope are shown below  The simplex of all probability 
distributions on outcomes of the game is a tetrahedron, 
the set of distributions that are independent between 
players is a saddle, the correlated equilibrium polytope is 
a hexahedron, and their 3 points of intersection are the 
Nash equilibria. Nash equilibria always lie on the surface 
of the correlated equilibrium polytope, but in larger 
games they need not be vertices of it (Nau et al. 2004). 

 

 
 
The mixed-strategy Nash equilibrium is on the inefficient 
frontier, as is often true of completely mixed strategies in 
games with multiple equilibria. An obvious and 
appealing solution of this game that is neither a Nash 
equilibrium nor an extremal correlated equilibrium is to 

flip a coin to choose between TL and BR, which is the 
midpoint of the edge connecting their two vertices. 
 
The players can further restrict the set of rational 
solutions of the game through the acceptance of 
additional bets that reflect joint beliefs more precise than 
the whole set of correlated equilibria.  For example, in 
the battle-of-sexes game, the row player could say “in the 
event that I play Top [Bottom], I will assign probability 1 
(for betting purposes) to the event that my opponent will 
play Left [Right],” and the column player could similarly 
say that in the event that she plays Left [Right], she will 
assign probability 1 to the event that her opponent plays 
Top [Bottom].  This would indicate that, perhaps through 
cheap talk or some mechanism such as coin-flipping, the 
players have coordinated their moves, thereby reducing 
the set of joint probability distributions to the edge of the 
simplex that connects TL and BR.  
 
5  Risk aversion & risk neutral probabilities 
 
The results of the previous sections require the players to 
be risk neutral, i.e., to have state-independent linear 
utility for money.  The more general case of risk averse 
players will be considered next, and it will be shown that 
risk aversion leads them to hedge their bets, making the 
revealed set of equilibria larger than it would have been 
otherwise.   Furthermore, when players are risk averse, 
side bets may provide opportunities for Pareto-improving 
modifications of the rules of the game, which leads to 
some blurring of the distinction between strategic and 
competitive equilibria.  In extreme cases, players may be 
able to hedge their positions so as to decouple their 
payoff functions and exit from the game altogether.  To 
set the stage, some general remarks on the modeling of 
risk aversion are appropriate. 
 
If an agent is risk averse rather than risk neutral, and if 
she has substantial prior stakes in events (“background 
risk”), then Theorem 1 still holds, but its parameters have 
a different interpretation.  Suppose that the agent has 
subjective expected utility preferences and her risk 
attitude is represented by a strictly concave von 
Neumann-Morgenstern utility function U(x), with its 
derivative denoted by U ′(x), and suppose that her 
background risk is represented by a payoff vector z 
whose elements differ across states by amounts that are 
large enough to cause substantial variations in the 
marginal utility of money.   Then her acceptance of an 
additional small bet x will not be based on its expected 
value but rather on its expected marginal utility in the 
context of z.    If the agent’s beliefs are represented by a 
precise probability distribution p, then her status quo 
expected utility is Ep[U(z)].  A bet x will be acceptable to 
her if it maintains or increases her expected utility, i.e., if 
Ep[U(z+x)] − Ep[U(z)]  ≥ 0.   
 



If the elements of x are small enough in magnitude so 
that only first-order effects are important, then x is 
acceptable if  Ep[U ′(z)x] ≥ 0, or equivalently if Eπ[x] ≥ 0, 
where π is a probability distribution obtained by 
multiplying the true probability distribution p pointwise 
by the marginal utility vector U ′(z) and then re-
normalizing, i.e., π(s) ∝ p(s)U ′(z(s)).   This is the risk 
neutral probability distribution of the agent at z, because 
she evaluates small bets in a seemingly risk neutral way 
using π rather than her true subjective probability 
distribution p.  The risk neutral distribution of the agent 
is not uniquely determined by beliefs:  it also depends on 
her background risk and her attitude toward it.6 
 
In a financial market, the necessary and sufficient 
condition for asset prices to create no arbitrage 
opportunities is that there should exist a probability 
distribution under which every asset’s expected payoff 
(discounted at the risk-free rate of interest if time is a 
factor), lies between its bid and ask prices.  This result is 
known as the “fundamental theorem of asset pricing,” 
and it is merely de Finetti’s fundamental theorem of 
probability applied to asset prices offered by the whole 
market rather than by a single individual.  The 
probability distribution that prices the assets is called the 
risk neutral probability distribution of the market, 
because it prices them in a seemingly risk neutral way, 
and it can be determined from prices of options or Arrow 
securities.7 Because of friction and incompleteness, the 
market’s risk neutral distribution is usually not unique.   
Rather, there is a convex set of risk neutral distributions 
determined by bid and ask prices for assets. 
 
In equilibrium, the marginal prices that agents are willing 
to pay for financial assets must agree with market prices, 
which means that the risk neutral probability 
distributions of all the agents must agree with the risk 
neutral probability distribution of the market.  More 
precisely, the set of risk neutral distributions that is 
determined by bid and ask prices in the market is the 
intersection of all the sets of risk neutral distributions that 
are determined by bid and ask prices of individual 
agents, which is non-empty if and only if there are no 
arbitrage opportunities.  Thus, rational behavior in 
markets requires the agents to “agree” on risk neutral 
probabilities in the sense that their sets of personal risk 
neutral probabilities must overlap to some extent.  In the 
special case where the agents have complete preferences 
and the market is also complete and frictionless, the risk 
neutral probabilities of the agents and the market are 
uniquely determined and must be identical. 
                                                           
6 The role of risk neutral probabilities in modeling a single agent’s 
aversion to risk—and also ambiguity—is discussed in more detail by 
Nau (2001, 2003, 2011). 
7 The literature on arbitrrage pricing and risk neutral probabilities in 
finance traces back to the seminal work of Black and Scholes, Merton, 
Cox, Ross, Rubinstein, and many others in the 1970’s, although the 
connection with de Finetti’s use of the no-arbitrage principle in 
subjective probability, dating to the 1930’s,  was not noticed until later. 

6  Risk neutral equilibria 
 
When agents are risk averse with significant prior stakes 
in events, their lower and upper previsions determined by 
offers to accept small bets must be interpreted as lower 
and upper expectations with respect to convex sets of risk 
neutral probabilities, rather than true subjective 
probabilities, as discussed above.  The same 
consideration applies to the analysis of games.  A game’s 
own payoffs are a source of background risk with respect 
to bets on its outcome, and if the players are sufficiently 
risk averse, this will give rise to distortions when the 
rules of the game are revealed through betting.  The 
result will be that a rational solution of the game is 
characterized by a convex set of equilibria whose 
parameters are risk neutral probabilities. 
 
Suppose that each player has strictly risk averse 
subjective-expected-utility preferences with respect to 
profiles of monetary payoffs in the game, and let Ui 
denote the strictly-concave von Neumann-Morgenstern 
utility function of player i.  Then the payoff profiles 
{xi(s)} translate into utility profiles {Ui (xi(s))}. Let G* 
denote the “true” game that is determined by the utility 
profiles.   If Ui′ denotes the first derivative of Ui, strict 
concavity requires that Ui′(x) < Ui′(y) whenever x > y.  
Let ui denote the utility payoff vector for player i, whose 
value in outcome s is Ui (xi(s)), and let ui′ denote the 
corresponding marginal utility vector whose value in 
outcome s is Ui′(xi(s)).  Also, let uij denote the vector 
constructed from ui in the same way that xij was 
constructed from xi, namely uij(s) = Ui (xij(s)).  In other 
words, uij(s) is the utility that player i would receive by 
playing her jth strategy when all others play according to 
s.  Let uij′ denote the corresponding profile of marginal 
utilities for money, i.e., uij′(s) = Ui′(xij(s)).  As in the case 
of xij, there is some duplication of information insofar as 
uij(s) and uij′(s) do not depend on the value of si.   
 
By an argument analogous to the one used in the risk 
neutral case, player i will choose strategy j in preference 
to strategy k only if her beliefs are such that she would be 
willing to exchange the utility profile uik, for the utility 
profile uij, hence a small monetary bet yielding a profile 
of changes in marginal utility that is proportional to  
uij − uik should be acceptable if the event eij is observed 
to occur.  When strategy j is chosen, the agent’s profile 
of marginal utilities for money is uij′, and a monetary bet 
that yields a profile of marginal utilities proportional to 
uij − uik can be obtained by dividing the utilities by the 
corresponding marginal utilities.  Thus, agent i should be 
willing to accept a small bet whose monetary payoffs are 
proportional to  (uij − uik)/uij′ conditional on the 
occurrence of eij.   Such a bet has an unconditional payoff 
vector of ((uij − uik)/uij′)eij in units of money. 
 



Let G* now denote the matrix whose rows are indexed 
by ijk and whose columns are indexed by s and whose 
ijkth row is the vector ((uij − uik)/uij′)eij. This is the 
revealed-rules matrix for the game G*, representing the 
information about the game that can be made common 
knowledge through unilateral offers to accept small bets 
when the players are risk averse.  An observer may 
choose a small non-negative vector α of multipliers for 
these bets, and the players as a group will receive the 
vector of payoffs  α ∑ G*, with the opposite payoffs for 
the observer.  The same rationality criterion that was 
applied in the risk neutral case also applies here in the 
risk averse case:  an outcome s is jointly coherent if and 
only if there is no non-negative α such that α ∑ G* ≤ 0 
and [α ∑ G*](s) < 0.8   The definition of correlated 
equilibrium and the fundamental theorem of games can 
now be generalized accordingly.  The proof is the same. 
 
DEFINITION:  π is a risk neutral equilibrium of G* if 
and only if G*π ≥ 0, which means that for every player i 
and every strategy j and alternative strategy k of that 
player, either Pπ(eij) = 0 or else Pπ((uij − uik)/uij′)|eij) ≥ 0.   
 
THEOREM 3:  In a game among risk averse players, a 
strategy is jointly coherent if and only if there is a risk 
neutral equilibrium in which it has positive probability. 
 
To provide a story to go with this solution concept, 
suppose that the players employ a mediator who will use 
a possibly-correlated randomization device to 
recommend  strategies to them privately, but in this more 
general case they do not necessarily agree on the true 
prior probabilities of the outputs of the device.  For 
example, the device may take some of its input data from 
financial markets or from political or sporting or weather 
events.   Suppose that through side bets with each other 
or through participation in a public betting market for the 
input events, they have arrived at a common prior risk 
neutral probability distribution π  for the outputs of the 
device.  Finally, suppose they will not have the 
opportunity to directly observe any of the input or output  
data prior to making their moves except for the private 
recommendations they receive from the mediator, who 
will have observed the data.  Under these conditions, for 
all i, j, and k, the constraint Pπ((uij − uik)/uij′)|eij) ≥ 0 

                                                           
8 When the utility functions of the players are strictly concave rather 
than linear, the bet with payoff vector ((uij − uik)/uij′)eij  is technically 
only “marginally” acceptable to player i, so a bet with an aggregate 
payoff vector of α ∑ G* may not be quite acceptable to the players for 
finite α.  In such a case the observer may need to make a small side 
payment to the players to get them to agree to the deal, which makes 
the observer’s position not entirely riskless.   However, if α ∑ G*  ≤ 0 
and [α ∑ G*](s) < 0, then by choosing α sufficiently small,  the 
magnitude of the required side payment can be made arbitrarily small in 
relative terms in comparison to the aggregate loss the players will suffer 
if they play s, which will be considered here as sufficient grounds for 
not playing s.  This could be made precise by using the concept of ε-
acceptable bets introduced in  Nau (1995), but it will not be pursued 
here in the interest of brevity. 

implies pij ∑ (uij − uik)  ≥ 0, i.e., according to player i’s 
own private beliefs, strategy j yields an expected utility 
greater than or equal to that of the alternative strategy k 
when j is recommended to her, so it is optimal for each 
player to follow the mediator if all others do, and this is 
common knowledge.   Thus, a game among risk averse 
players is played coherently if and only if it is played “as 
if” with the help of a mediator who uses an incentive-
compatible device with respect to whose outputs the 
players have  a common prior risk neutral distribution, 
although their unobserved true distributions may differ. 
 
A risk neutral equilibrium is a special case of a subjective 
correlated equilibrium (Aumann 1974, 1987), one that 
can be implemented with the use of a randomizing device 
about whose properties the players may hold differing 
beliefs.  Such a device would be welcome in playing a 
zero-sum game—all players might believe their expected 
payoffs to be positive!  Aumann (1987) remarks that 
such a result depends on “a conceptual inconsistency 
between the players.” By permitting such 
inconsistencies, subjective correlated equilibrium places 
only weak restrictions on solutions of many games. A 
risk neutral equilibrium adds the nontrivial restriction 
that  the players’ risk neutral prior probabilities should be 
mutually consistent, as in an equilibrium of a financial 
market.  When players are risk averse, their true 
probabilities may be unobservable, and inconsistencies 
among them are neither surprising nor problematic. 
 
As in the risk neutral case, there is more to be said about 
the rational solution of the game than to identify the 
outcomes that are jointly coherent.  It is also possible to 
place bounds on risk neutral probabilities of events or 
risk neutral expectations of financial assets that depend 
on the outcome of the game, namely whatever bounds 
are determined by the system of inequalities G*π ≥ 0 that 
defines the convex polytope of risk neutral equilibria.  
These bounds are bid-ask spreads for assets that the 
players are jointly offering to the observer through their 
bets that reveal information about the rules of the game. 
 
A simple example of the concept of risk neutral 
equilibrium is provided by the zero-sum game of 
“matching pennies,” whose payoff matrix is: 

 Left Right 
Top  1, −1 −1,  1 

Bottom −1,  1  1, −1 

When played by risk neutral players, the revealed-rules 
matrix G, scaled to a maximum value of 1, is: 

 TL TR BL BR 
1TB 1 -1 0 0 
1BT 0 0 -1 1 
2LR 1 0 -1 0 
2RL 0 -1 0 1 



This game has a unique correlated/Nash equilibrium in 
which the players use independent 50-50 randomization, 
so the graph of the set of equilibria consists of the single 
point (¼, ¼, ¼, ¼) in the center of the saddle. 
 
Now suppose that both players are risk averse and, in 
particular, assume that they both have exponential utility 
functions, U(x) = 1 − exp(−ρx), where the risk aversion 
parameter is ρ = LN(√2).   In units of utility, the payoff 
matrix of the matching-pennies game is then: 
 

 Left Right 
Top a, b b, a 

Bottom b,  a a, b 
 
where a =  1 − √½  ≈ 0.293 and b = 1 − √2 ≈ −0.414.  
The corresponding marginal utilities of money under the 
outcomes  a and b are 0.245 and 0.49, respectively, 
which conveniently differ by a factor of exactly 2. 
 
This game is constant-sum and strategically equivalent to 
the original one, having the same unique correlated/Nash 
equilibrium.  However, the rules matrix of the 
corresponding revealed game, G*, is not equivalent 
because of the distortions of nonlinear utility for money.  
It looks like this when scaled to a maximum value of 1: 
 

 TL TR BL BR 
1TB 1 −1/2 0 0 
1BT 0 0 −1/2 1 
2LR −1/2 0 1 0 
2RL 0 1 0 −1/2 

  
The polytope of risk neutral equilibria determined by the 
inequalities G*π ≥ 0 is a tetrahedron with these vertices: 

 TL TR BL BR EV>0? 
Vertex 1 2/15 4/15 1/15 8/15 1BT 
Vertex 2 8/15 1/15 4/15 2/15 1TB 
Vertex 3 4/15 8/15 2/15 1/15 2RL 
Vertex 4 1/15 2/15 8/15 4/15 2LR 

None of them lies on the saddle of distributions that are 
independent between {T,L} and {B,R}, so none is a 
Nash equilibrium of a game with these strategy sets.9  
Each of these probability distributions satisfies 3 out of 
the 4 incentive constraints with equality, i.e., assigns an 

                                                           
9 These distributions are the unique Nash equilibria of the game: 

 L* R* 
T* 2, -1 -1, 1 
B* -2, 4 1, -4 

under different mappings of {TL, TR, BL, BR} to {T*L*, T*R*, B*L*, 
B*R*}.  They lie on the two other saddles that can be drawn within the 
original simplex:   the one that omits the edges BL-BR and TL-TR and 
the one that omits the edges TL-BL and TR-BR 

expected value of zero to 3 out of the 4 rows of G*.  (The 
label of the row whose expected value is positive is 
shown in the rightmost column.). A graph of their 
configuration is shown below.  The polytope of risk 
neutral equilibria is suspended in the middle of the 
probability simplex, and the saddle of independent 
distributions cuts through its interior, a situation that 
would be impossible for a set of correlated equilibria. 

 
The uniform distribution that is the unique equilibrium of 
the game when the true utility functions of the players 
are common knowledge lies in the interior of the 
polytope of risk neutral equilibria. When players are risk 
averse, the small side bets they are willing to accept do 
not fully reveal the between-strategy differences in utility 
profiles that they face in the game, so the set of risk 
neutral equilibria is larger than the set of correlated 
equilibria.  This is true in general, as summarized by: 
 
THEOREM 4:  The set of correlated equilibria of a game 
with monetary payoffs played by risk neutral players is a 
subset of the set of risk neutral equilibria of the same 
game played by risk averse players. 
 
Proof:  If player i is risk neutral, she will accept a bet 
with payoff vector (xij − xik)eij, while if she is risk averse, 
she will accept a bet with payoff vector ((uij − uik)/uij′)eij, 
where uij(s) = Ui(xij(s)), and uij′(s) = Ui′(xij(s)).  The term 
eij will be ignored henceforth because it zeroes-out the 
same elements of both vectors.  By the subgradient 
inequality, U(z) < U(y) − U′(y)(y − z), because the value 
of a strictly concave function U at z must lie below the 
tangent to its graph at any other point y.  Letting y = xij(s) 
and z = xik(s) yields uik(s)  ≤ uij(s)  − uij′(s) (xij(s) − xik(s)), 
which rearranges to (uij(s) −uik(s))/uij′(s)  ≥ xij(s) − xik(s), 
with strict inequality if xij(s) ≠ xik(s).  Hence, the bet that 
player i is willing to accept when she chooses strategy j 
in preference to k if she is risk neutral is weakly 
dominated by the bet she will accept in the same game if 
she is risk averse.  This means G*  ≥ G pointwise, from 
which it follows that G  π ≥ 0 implies G*π  ≥ 0, so if π is 



a correlated equilibrium of the game played by risk 
neutral players, then it is a risk neutral equilibrium of the 
same game when it is played by risk averse players.  É 
 
Hence, risk aversion introduces even more imprecision 
into the probabilistic solutions of non-cooperative games 
when their rules must be revealed through credible bets. 
 
7   Rewriting the rules of the game 
 
It was pointed out earlier, in the discussion of the battle-
of-sexes game, that players could accept additional bets 
with an observer, beyond those that determine the rules 
of the game, in order to reveal more precise information 
about their joint beliefs.  However, if they are risk neutral 
and have in fact implemented a Nash or correlated 
equilibrium, which induces a common prior distribution 
over outcomes of the game, they cannot both be made 
strictly better off through bets with each other.  When 
players are risk averse, this is not necessarily true, and 
the matching-pennies game provides a good example.  
When played by risk averse players, it is a negative-sum 
game in units of utility, and for both players the unique 
Nash equilibrium (coin-flipping) has an expected utility 
that is below their status quo utility.  Risk averse players 
would rather not play this game at all.   Furthermore, 
player 1’s marginal utility of money is greater in 
outcomes TR and BL (her losing outcomes) than in the 
other two, and vice versa for player 2.  The Nash 
equilibrium is therefore not a competitive equilibrium of 
a financial market in which it is possible for the players 
to make additional bets that reveal their solution of the 
game in addition to the bets that reveal the rules of the 
game (the latter being the rows of G*).  In the context of 
the Nash equilibrium, it is desirable to both players to 
make a bet in which player 1 wins $x if TR or BL occurs 
and player 2 wins $x if TL or BR occurs, for any positive 
x ≤ 1.  Such a bet changes the rules of the game to a 
finite extent, but coin-flipping remains a Nash 
equilibrium.   By choosing x = 1 they can even zero-out 
their payoffs, dissolving the game altogether.  If they do 
not bet with each other in this fashion, but instead bet 
separately with an observer, there is an arbitrage 
opportunity for the observer that arises from the fact that, 
at the outset, the players’ risk neutral probabilities do not 
agree if their true probability distributions are uniform. 
 
8  Conclusions 
 
The concept of coherent lower and upper previsions 
extends in a natural way to non-cooperative game theory, 
where it can be applied to the process of revealing the 
rules of the game as well as expressing the beliefs of the 
players.  A rational solution of the game, from the 
perspective of an observer, is typically a convex set of 
correlated equilibria rather than a Nash equilibrium.   
The presence of aversion to risk changes the units of 
analysis from “true” subjective probabilities to “risk 

neutral” probabilities, as in asset pricing theory, and it 
typically renders the solutions even more imprecise.   
When risk averse players make bets with each other that 
reflect their beliefs about the solution of the game as well 
as the rules from which they started, they may be able to 
rewrite those rules in a mutually beneficial way, merging 
the concepts of strategic and competitive equilibrium   
 
These results address some of the issues raised by 
Kadane and Larkey (1982) concerning the relation 
between game theory and subjective probability theory.  
The theory of game-playing presented here is a direct 
extension of subjective probability theory à la de Finetti, 
and it exploits the underappreciated common-knowledge 
property of de Finetti’s use of bets to measure beliefs.  
Common knowledge of a game’s rules constrains rational 
beliefs but in general it does  not uniquely determine 
them, leaving room for subjective differences, 
particularly when players are risk averse and/or have 
incomplete knowledge of their own payoff functions. 
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