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Abstract

The origins of the notion of quasi-concave function are considered, with special interest in some work by John
von Neumann, Bruno de Finetti, and W. Fenchel. The development of such pioneering studies subsequently led
to a whole field of research, known as “generalized convexity.” The different styles of the three authors and the
various motivations for introducing quasi-concavity are compared, without losing sight of economic applications
characteristic of the whole field of generalized convexity.
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Sommario

Il lavoro considera le origini della nozione di funzione quasi-concava, con particolare riguardo ad alcuni scritti di
John von Neumann, di Bruno de Finetti, e di W. Fenchel. Lo sviluppo di tali studi pionieristici ha successivamente
consentito lo sviluppo di un intero campo di ricerca detto “convessita generalizzata.” | diversi stili dei tre autori
e le differenti motivazioni che hanno portato all'introduzione della quasi-concavita vengono confrontati, senza
perdere di vista il riferimento alle applicazioni economiche che costituiscono una caratteristica in tema di convessita
generalizzata.

0 2003 Elsevier Inc. All rights reserved.

MSC:01A60; 26B25; 52A01; 91B16; 91A10

Keywords:Convexity; Quasi-convexity; Utility theory; Von Neumann; De Finetti; Fenchel

* Corresponding author.
E-mail addressesangelo.guerraggio@uni-bocconi.it (A. Guerraggio), molhoe@eco.unipv.it (E. Molho).

0315-0860/$ — see front mattér 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.hm.2003.07.001


http://www.elsevier.com/locate/hm

A. Guerraggio, E. Molho / Historia Mathematica 31 (2004) 62—75 63

1. Introduction

The first modern formalization of the conceptooinvex functiorappears in Jensen [1905]. Since then,
at first referring to “Jensen’s convex functions,” then more openly, without needing any explicit reference,
the definition of convex function becomes a standard element in calculus handbooks.

A function f:C € R" — R, whereC is a convex set, is said to bmnvexwhen the following
inequality holds, for any, y € C and for anyr € [0, 1]: f(tx + (1 —1)y) <tf(x) + (1 —1) f(y). If the
reverse inequality holds, i.e f is convex, the functiory is said to be&concave Such a definition (which
is based upon the three pointsy, andzx + (1 —t)y) becomes simpler when we consider a smaller class
of functions. A differentiable function is convex whenevét, y € C, the following inequality, whose
geometric meaning is apparent, holggx) — f(y) > Vf(x)(y — x). Moreover, a twice differentiable
function f is convex whenevelyx € C, d®f(x) > 0; the last inequality extends, in a natural way, the
elementary rule that studies the convexity of a real function of a real variable through the sign of its
second derivative.

We shall not mention the importance and the applications of a basic instrument such as convexity. We
just give some hints on the topics that will be brought up later. Convexity is one of the most frequently
used hypotheses in optimization theory. It is usually introduced to give global validity to propositions
otherwise only locally true (for convex functions, for instance, a local minimum is also a global
minimum) and to obtain sufficiency for conditions that are generally only necessary, as with the classical
Fermat theorem or with Kuhn—Tucker conditions in nonlinear programming. For the history of linear
and nonlinear programming one can turn to Grattan-Guinness [1989], Giorgi and Guerraggio [1998],
Kjeldsen [2000]. In microeconomics, convexity plays a fundamental role in general equilibrium theory
and in duality results. In particular, in consumer theory, the so-called convexity of preferences ensures
the existence of a demand function; moreover, in production theory, the convexity of the production sets
(which eliminates increasing marginal returns) ensures the existence of an equilibrium production. In
decision theory, the concavity of the utility function corresponds to risk aversion for the agent. In game
theory, convexity ensures the existence of an equilibrium solution: the introduction of the fundamental
notion of a mixed strategy corresponds to a convexification of the strategy set. For a historical reference,
see, e.g., Weintraub [1992].

In the past century, the notion of a convex function has been generalized in various ways, either by
an extension to abstract spaces, or by a change in the inequalities presented above. One of the more
recent generalizations, for instance, is due to M.A. Hanson, who introdomeexd functionsn the 1980s:

f:R" — R is invex whenever it is differentiable and there exists a functjio®” x R" — R" such
that f(x) — f(y) > Vf(x)n(x,y). A more classical extension of convexity, only partially comparable
to invex functions, is the class glasi-convexXunctions. At an intermediate level of generality (at least
in the continuous case) we mentipseudo-convex functionshese classes can be characterized through
the generalized monotonicity of gradient maps; see Hadjisavvas and Schaible [2001a, 2001b].

Many important properties of convex functions are preserved within a wider functional environment.
If f is convex, its lower level setd; = {x € C: f(x) <k, k € R} are convex; the converse implication
does not hold true, as it is apparent in the case of a monotone function of a real variable. The same holds
true in the concave case, referring to the convexity of the upper leveBgetdx € C: f(x) >k, k € R}.
Quasi-convex (quasi-concave) functions are characterized by the last property: they are those functions
whose level sets\, (B;) are convex or, equivalently, those functions that satisfy the following (three
points) condition:vx,y € C, Vr € [0,1], f(tx + (1 —t)y) <maX{f(x), f(M)}, (ftx + QA —1)y) >
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min{ f (x), f(y)}). Itis easily seen that, in the case of real functions of one real variable, every monotone
function is quasi-convex (and quasi-concave). The description of the class of quasi-convex functions
and of their properties is developed following the same pattern as in the convex case; for differentiable
functions, instead of considering the inequalftyy) — f(x) > Vf(x)(y — x), it is enough to require

thatV f(x)(y —x) = 0imply f(y) — f(x) > 0.

We do not mention other variations on the topic of generalized convexity here. Thus we refer to
Schaible and Ziemba [1981] and Avriel et al. [1988]. All the definitions follow a pattern that reproduces
the relationships among convex, strictly convex, and strongly convex functions where some special
properties are preserved.

In this paper we wish to analyze the first contributions to quasi-concavity, either to pinpoint the reasons
such a notion was introduced or to describe how the same idea of a quasi-concave function has been
developed following different routes. Its history develops along the second half of the last century, but
we find some puzzle, even on priority.

2. BrunodeFinetti

Bruno de Finetti (1906-1985) is one of the mathematicians whose name is usually linked to the
introduction of the class of quasi-concave functions. In 1949—the year of publication of his work “Sulle
stratificazioni convesse” [de Finetti, 1949]—de Finetti was a full professor of financial mathematics
at Trieste. He obtained his degree in “applied mathematics” in 1927 in Milan, where he attended the
courses in economics held by Ulisse Gobbi at the Politecnico. Then he worked first in Rome at the
mathematical department of the “Istituto Centrale di Statistica” and subsequently in Trieste, as actuary
in a major insurance company. In the years between the two wars de Finetti conceived the main ideas
that would make him a protagonist in modern probability theory: first the subjective approach, then the
study of exchangeable processes and a formulation of the general theory of processes with independent
increments. We limit ourselves to giving just some chronological references in order to emphasize
the preeminent role played by this young researcher in the field of probability theory. For a detailed
bibliography on the work of de Finetti, see also Daboni [1987]. Between 1928 and 1930 the journal
Rendiconti dell’lstituto Lombard@ublished some articles stimulating controversy between de Finetti
and Fréchet about the hypothesisseadditivity. In 1937, theéAnnales de I'Institut M. Poincarpublished
the text of a cycle of five lessons held at the Institute two years before, where de Finetti stated in an
almost final version his subjectivist point of view on probability. Moreover, in 1937, de Finetti is among
the protagonists of th€ollogue consacré a la theorie des probabilitésganized by the University of
Genéve in the frame of a series of meetings held yearly in order to examine a given subject thoroughly.
In the same years de Finetti was an outstanding figure in the Italian mathematical world. He was one
of the first scholars to study the applications of mathematics to economic and social sciences. Together
with masters such as Guido Castelnuovo and Francesco Paolo Cantelli, he may be considered one of the
founders of the Italian school of probabilistic studies. He devoted special attention to the methodological
aspects in his studies: he declared the importance of abstract and general research, in order to obtain a
deeper understanding of social behavior. Contemporary Italian mathematicians, influenced by a tradition
going back to the 17th century, hesitated to follow the modern algebraic formal methods. Besides, the
cultural atmosphere urged the development of a pragmatic science, devoted to solve the real problems of
the country, and de Finetti himself had never forsaken a social conscience.
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In the 1930s, when the fascist dictatorship took hold in Italy, de Finetti saw in the new government
the revolutionary possibility of creating a “third way,” superior both to liberalism and to socialism. The
refusal of every compromise with the new liberal world allowed him to concei@ovoa globally
fascist idea of life (and of economy): “in the free-trade economy the individual is subject to the system
that presupposes egoism and compels to egoism even those who understand that the result of all egoism
is chaos and ruin; only the discipline of an outer command may rescue one from the slavery of freedom,
from the slavery of anarchy” [de Finetti, 1943, p. 48]. The 1929 depression was experienced as an
unambiguous sign of the crisis of the system and of the defeat of economic theory, not fit to account
for the new phenomena: “it is already too evident that the doctrine and the system urgently need a deep
revision for anybody to deny it in good faith, unless he lives in the clouds or on a university chair”
[de Finetti, 1935a, p. 364]. The criticism of the Paretian system, developed on the basis of strong ethical
expectations in a group of articles that introduce the themeasgetifire economicded him to a position
that was absolutely original in the framework of Italian mathematics in the 1930s: one should “not give
up, but increasingly refine the subtle mathematical sharpness that clearly distinguishes Pareto from other
economists, one should let go of the contacts with historical reality instead of holding them fast, one
should make a cleaner and stricter distinction between science and the assessment of the aim for which
one can exploit it” [de Finetti, 1935b, p. 230]. In short, to reach the truth, one should not “give up the
too abstract character of Pareto’s ideas to watch reality closer, but, on the contrary, one should make
abstractness more perfectly coherent” [de Finetti, 1935b, p. 230].

In 1954, de Finetti (who was in Trieste when “Sulle stratificazioni convesse” was published) moved
to the University of Rome. The institutions had changed. De Finetti changed his political options, but
kept his attention fixed upon political themes. He assumed a critical tone: “the necessity to design and to
accomplish a different economic system is urgent not only in answer to the needs of the community: it
must be achieved so as to save humanity from self-destruction as well” [de Finetti, 1973, p. 77].

Hereafter we study the work “Sulle stratificazioni convesse,” a technical article issued in 1949 in
“Annali di Matematica Pura e Applicata,” where the notion of quasi-concavity is introduced. It is the
first time that de Finetti devoted his attention to this topic, even if the main issues of his paper can find
a natural setting in the ideas of contemporary mathematicians, always paying attention to social and
economic applications.

The work begins with three problems that we formulate in modern terms:

(a) Is a quasi-concave function concave as well? Or, in the words of de Finetti, “given a family of convex
regions, one inside the other or, as we say for the sake of brevioyeex stratificationis it possible
to associate a convex functiof( P) with it, as stated before? or, briefly, is itstratification of a
convex function?

(b) Assuming a negative answer to the first question, does there always exist, for a given quasi-concave
function ¢, an increasing transformatiafi such that the compositiofi = F[¢] is concave?

(c) Assuming a positive answer to the second question (considering as equivalent all the functions
z=h+kf, with h, k € R), does a functiorF[¢] that is theleast concavexist, i.e., one satisfying
the inequalityF[¢] < G[g¢] for any increasing transformatiafi such thatG[¢] is concave?

In his work, de Finetti uses the term “convex function” to denote what is usually caltesheave
function. In the sequel we will use the modern terminology. Now, we will study the details of de Finetti’s
work and the answers he gives to his own problems, focusing on some inexactnesses and on what



66 A. Guerraggio, E. Molho / Historia Mathematica 31 (2004) 62—75

may be considered an extreme reliance on geometric intuition (due to his special mathematical style).
Nevertheless, the originality of his intuitions and the consciousness of the deep connections between
the analytical problems, subjects of the preceding questions, and the economic models should not be
undervalued.

The first paragraph—“Generalities"—containing the enunciation of the three problems mentioned
above, also shows the style and the methods of the whole article (it is de Finetti’'s typical mathematical
style). In de Finetti's own words there is reference—immediate and explicit—to the problems of
economic analysis. The analysis of what will be called quasi-concavity was suggested to de Finetti from
utility theory, as the author acknowledges. The discussion of the first problem is justified by the statement
that, in mathematical economics, “it seems to be deemed” that from the convexity of the regions delimited
from the indifference varieties the concavity of the utility index necessarily follows. The second problem
makes an implicit reference to the dispute betwegtinalistsandcardinalists The basic assumption of
the utilitarian revolution was the rational behavior of the consumer, who was considered to be able to
rank his needs; it seemed that the existence of a function (of consumable goods) that measured utility
was unavoidable. This fundamental concept—utility—was then defined as a measurable quantity in the
cardinal sense, unique but fénear increasing transformations. But, at the end of the 19th century,
Pareto’s work appears with a new awareness that will lead to the ordinalist paradigm proposed by Hicks
and Allen (1934). They say that it is not at all necessary to assume the cardinal measurability of utility;
utility is just the expression of the preferences of the consumer, represented by the indifference curves
of the agent (the level sets of the function), unique butnimnotonancreasing transformations. In the
second problem, the author wonders if in the class of functions that represent the utility of the consumer,
there is a concave function.

So the idea of a quasi-concave functignwhich represent a “convex stratification,” for which “the
regions defined by the inequalit§(p) > ¢ obviously make up (as the constanthanges) a family of
convex regions” is not based merely on formal reasons, with a subsequent application and exemplification
in economic analysis—almost to prove the significance of the mathematical procedure. On the contrary,
in de Finetti the introduction of quasiconcavity is justified by economic theory. We can say, with some
emphasis, according to the spirit of de Finetti's work, that generalized convexity has been intimately
connected with utility theory since it began.

Afterwards the topic is developed in strictly mathematical terms. The formal level is characterized
by the strong presence of intuition and of geometric methods and language. Geometric terms such as
“bottlenecks,” “infinitely thin layers,” “contours,” and “indentations” are present. For the sake of clarity,
the author makes reference to pictures of special cases, in a period when the mathematical style is
already sufficiently aligned to modern abstract standards. Other propositions are explicitly proved in
a geometric way. On the whole, the paper is not segmented into lemmas, theorems, proofs, remarks,
examples, but is the development of a unique subject thought of and “seen” in geometric terms and then
written in an analytic language that maintains some hints of the underlying structure, where, e.g., some
continuity assumption is left out or some proof that is deemed evident and immediate in a geometric
three-dimensional intuition is omitted.

In this way de Finetti is able to give an answer to the second question. Generally his answer is
negative, but it becomes positive whenever the funcidis assumed to have bounded first and second
derivatives.” The example, considered in a footnote, of a fungtiqof one real variable) and of its
transformationf (x) = e, for which one hasf”(x) = —Ae W [A(¢'(x))? — ¢”(x)], shows that
concavity of f is ensured if one takes “large enough” £ > ¢”(x)/[¢’(x)]%), but this is true ify” is
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bounded and@’ is far from zero. Another doubtful point is the sentence concerning the domain of the
functions considered. De Finetti says that every remark will refer to finite-dimensional spaces, even if
its extension to the infinite-dimensional case is not a problem. What you have to do is “to give up—it
is not a clear remark—those conclusions arising from the possibility of considering maxima instead of
suprema.”

If we go back to the three main problems of the paper, we find that a generally negative answer to
the first two problems is given immediately, through some geometrical examples: there are some convex
stratifications that are not stratifications of concave functions; moreover, the concavification of a quasi-
concave function “would not be true if some restriction were not imposed.” Now, taking for granted that
such restrictions are implicitly imposed to be certain that the class of concavifying transformations is
nonempty, de Finetti devotes himself to the third question. Here there is no direct reference to economic
problems, but during the same years de Finetti worked on the utility theory, where he emphasized
the relevance of the notion of relative concavity (see, e.g., de Finetti [1952]). These ideas would be
developed later, when the notion of risk aversion was introduced by Pratt and Arrow [Pratt, 1964,
Arrow, 1970], and their relation to concavity would be developed. An economic agent is risk-averse if and
only if his utility function is concave and its “concavity degree” represents a measure of risk-aversion.

The first step in the construction of the least concave function is a lemma concerning the construction
of the least concave function greater than a given functiordefined on a seC: “let f(P) =
sup. ), A (Py) where the supremum is calculated considering all the possible expressidhs- of
> . AP as a linear combination with coefficients > 0 of any (finite) number of point®; of C; it
results thatf (P) is convex and that, on the whot® f(P) > ¢ (P), while f(P) < ¢(P) wheneverp is
any other convex functiol ¢ (P).” In de Finetti’'s opinion “the proof is obvious,” so it is omitted. From
a modern point it is not so trivial. As a matter of fact, in a recent monograptoovex analysifHiriart-

Urruty and Lemaréchal, 1993] we can find the following theorem (Proposition 2.5.1, |, p. 169): “Let
g:R" — R U {400}, not identically+oo, be minorized by an affine function: for sone ») € R" x R,
g(x) > (s, x) — b, for all x € R". Then, the following three functiong,, f>, f3 are convex and coincide
on R™:

filx) = inf{r: (x,r)eco epig}

fa(x) =sup{h(x): h € ConvR", h < g}

k k
f3(x) =inf Zajg(xj): k=12,...,a €A, xj €domg, Zajxj =x;."
j=1 j=1

The meaning of the symbols is appareotiepig, ConvR", domg are, respectively, the smallest
convex set containing the epigraph of a functignthe set of convex functions defined @&t, and
the effective domain of the functiog. If such modern language is translated into de Finetti's terms,
it can be immediately seen that the preceding theorem is nothing but de Finetti’'s lemma (which does not
consider the functioryy), with one, or better yet, two differences: the proof given by Hiriart-Urruty and
Lemaréchal is longer than one page and, moreover, there is an assumption that is ignored by de Finetti
(and not replaced by anything else). And it is an essential hypothesis, as can easily be seen by considering
the functiong (x) = x3; there exists no affine minorizing function fgr and the three functiong;, f,
and f3 are identically—oo.

The monograph by Hiriart-Urruty and Lemaréchal was published only recently, but de Finetti had
the possibility of realizing that he needed a hypothesis or, in someway, doubting of the generality of
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his result. In [Ascoli, 1935] a preceding work was quoted on the minimal nondecreasing function greater
than a given real function defined on an interjvalb]. Ascoli was a known mathematician in Italy, even if

not first rank; moreover, he published his note in a prestigious journal, whose fame was well-established.
The work is based on a theorem—well emphasized—where the least concave (continuous) function is
constructed greater than abpundedfunction on an intervala, b]. The boundedness assumption just
allows Ascoli to assert the existence of majorizing linear functions.

De Finetti's lemma is followed by “two different procedures to construct a least convex function.”
The former is an iterative procedure, which uses the preceding lemma and may be resumed as follows.
Given the (convex) indifference varieties of a functipridefined on an affine spac® with ming = «,
maxg = b, take the functiorpg(P) as follows,

_[a ey #£b,
‘”°(P)‘{b, o(P)=b,

whereP € S.

The functiong; is given by the preceding lemma, so it is the least concave function greatepghan
we can buildy, by considering the least function greater tiigrand constant wherg was constant. We
can now iterate this procedure and we build two sequences of functignsi} is a sequence of concave
functions, while{¢y} is constant wherever is constant. The existence of the limit{gf, }, for k — +o0,
is ensured by monotonicity. The limit functiofi is what we were looking for, since it is concave (it is
the limit of the concave functiong, 1) and it is “constant on the prescribed level varieties” (it is the
limit of the functionsg,,). De Finetti just fears the circumstances that can render the geometric procedure
described above, or the situations that “prevent the existence of the convex function one was looking for
(or better: that make it degenerate into a constant).” But the only degenerate solutian is b; as a
matter of fact, if it were the case thatx) = ¢, even only on a set containing an interior po{t from
¢(P) =b > c andg(R) = ¢ (WwhereR is a point of the segmen® Q beyond Q) it would follow that
e(Q)=tp(P)+ (1L—1)¢p(R)>tc+(1—1t)c=c.

The latter is a more analytical procedure for the construction of a least concave function. First de Finetti
proves a necessary and sufficient condition, which implicitly confirms the negative answer given to the
first problem: a quasi-concave functignis concave if and only if all its profileg; are concave, where
the functiong; is defined through the linear transformatiansp; (x) = sup, ¢(P), £(P) = x. In a hint
contained in a footnote, the proof brings forward the notion of the subgradient of a convex function,
introduced by R.T. Rockafellar in the 1970s. We can find some inexactness (for instance, the maxima
of ¢ are treated without having ensured their existence and, in particular, the boundedness of a given
closed set). Later the concavity condition on the profiles is rewritten equivalently, through a functional
inequality, by the use of Rademacher’'s theorem (1919) that de Finetti exploits in a special form and
without any explicit quotation: a concave function is “derivable except for at most a numerable infinity
of cusps.” The least concave function is the function that satisfies this inequality in the limit case of
equality, i.e., solves the differential equatiph(x) = kW, (x1, x), with k = ¢; (x1) and W, built through
elements ofp, and is therefore characterized by the following profiles:

X2
pe(x) =h +k/ W (x1, u)du.

X1
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The second procedure (the more analytical one) for constructing the least concave function is exposed
in the fifth paragraph, where de Finetti remarks, without proof, that “it is useful to remark, as a corollary,
the following characteristic of least convex functions: if and onlyiis the least convex function,

f = F[g] is convex only ifF is increasing and convex.”

This property leads us to treat a recent contribution [Debreu, 1976]. Debreu studies the third problem
of de Finetti, whom he quotes explicitly, with a formally different definition of the least concave function.
He defines a preorder on the g€étof continuous, concave, real-valued functionsXmepresenting the
same stratificationv is more concave than if there is a real-valued, concave functighon u(X)
such thatv = f(u). Actually the two notions are equivalent, as Debreu himself proves by constructing
the minimal element according to his own definition. This coincidence was already stated by de Finetti
without any proof. In Debreu’s work it is emphasized in a long and complex proof. Another author, who
studied the second problem of de Finetti, i.e., the concavificability of a convex stratification, is Y. Kannai.
The concavificability conditions which are the main result of his works—see, e.g., Kannai [1977]—
follow some results by W. Fenchel, who first carried on some original ideas by de Finetti; moreover, the
concave function, which results from the concavification procedure proposed by Kannai in his proofs,
is the least concave function representing the convex stratification. Once again, we have to focus on the
heavy assumptions that Kannai makes in order to prove his results.

3. Werner Fenchel

The works where the notion of quasi-concavity (or quasi-convexity) is quoted and where some hint
to its origins is made usually make reference to the name of Werner Fenchel. Actually his monograph—
Convex Cones, Sets and Functighenchel, 1953]—is the second published work where quasi-convex
functions are studied but it is the first one where this word is explicitly used.

Werner Fenchel (1905-1988), born in Berlin, after obtaining a degree in mathematics, took the first
steps of his academic carrier in Gottingen, as an assistant of E. Landau. After some months spent, thanks
to a scholarship, in Rome with T. Levi-Civita and in Copenhagen with H. Bohr and T. Bonnesen, he
went to Denmark—with a pause in Sweden—to escape the rise of Nazism. In Denmark he taught—at the
Technical School and at the University of Copenhagen until 1974. The monograph we will consider was
written in the brief American period (from 1949 to 1951), when he visited the University of Southern
California, and then Stanford and Princeton. In the last university, Fenchel was invited by A.W. Tucker
to hold a series of seminars on convexity, which offered him hints and materials for the book he would
publish in 1953. It is not by chance thabnvex Cones, Sets and Functitiegins with acknowledgments
to “Professor A.W. Tucker” (and to H.W. Kuhn, for his “critical remarks”) for drawing his attention to
the work of de Finetti and to the concavifiability problem. Fenchel published about 50 works on real
and complex analysis, on convex analysis, on geometry, and on differential geometry; the monograph
on theTheorie der KérpefBonnesen and Fenchel, 1934]—translated into English, published in various
editions, and quoted by de Finetti—may be regarded, togetherGuitivex Cones, Sets and Functions
as his most significant publication.

Convex Cones, Sets and Functigmdivided into three chapters, whose topics appear in the title. Every
subject is developed in finite-dimensional spaces and a special attention is devoted to “results having
applications in the theory of games and in programming problems.” But, in spite of this setting, which
might lead to a mainly “applied” approach, the structure and the style of Fenchel’'s work are completely
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different from what we found in de Finetti's. Here, the distinction between the original problem and
the theory, which is developed with the aim to solve it, is just a fact. The possible applications are just
mentioned, in fact, in théntroduction afterwards the theme is developed in total autonomy, just based
on the principle of its own organic unity, and it is much easier to follow than in de Finetti, with a result
closer to the modern standard.

We are directly interested in the seventh and the eighth paragraph of the third chapter. They start from
the same issue as the second problem of de Finetti in terms of convex functions. Fenchel, who is not
interested in the existence and construction of most convex functions, considers the lower level sets of a
lower semicontinuous real-valued functipr(defined on a convex s& C %") and immediately obtains
some of their properties. Now he wonders whether, “conversely,” such a family of s¢itsdexed by a
real number and satisfying the same properties) may be consiitlesethe sensgenerated by a convex
function: “under what conditions is a family of selts satisfying -1V transformable into the family of
level sets of a convex function.” The conditions -1V are

| | JL.=D.
T
I 71 <tpimpliesL, C L,

i ﬂ L.=Ly,

T>10

IV L. is aclosed set,

while the previously quoted transformation is made through a continuous and strictly increasing function.
This is nothing but the second problem issued by de Finetti, with some continuity requirements that were
not explicitly made in his work but that in fact were geometrically considered. Conditions I-IV are not
sufficient, nor do they become sufficient even if we add the obvious requirement that the, sets
convex. Here Fenchel introduces the term “quasi-convexity,” enunciating and proving for the first time
the equivalence of the two definitions that we recalled in our Introduction.

Paragraph 7 is developed through a group of necessary and sufficient conditions to ensure that a family
of convex sets (satisfying the above-mentioned properties) is the family of the lower level sets of a convex
function. The first of these characterizations states that a quasi-convex function is convex if and only if
the inclusion

ALy + (L—A)Lyy C Ly,

holds, where\ € [0, 1] andt;, = A1g + (1 — A) 3. In force of this necessary and sufficient condition (and
of other propositions, which make use of “modern” instruments of convex analysis, suchsappiost
functionand theasymptotic cone Fenchel proves the same necessary and sufficient condition we found
in de Finetti on the convexity of the profiles. In de Finetti’s proof we pointed out a lack of exactness
in the implicit use of a boundedness assumption on some sets. It is the same remark that, in the final
notes and in general terms, leads Fenchel to claim the originality of his own procedure and to underline
the greater generality of his results (without any direct criticism on the Italian mathematician): “[...] is a
generalization to the case considered here of a result of de Finetti” who always used “the assumption that
the domainD and, thus, all level sets are compact and convex.”

Paragraph 8 is devoted to the same problem, but under differentiability assumptions. Fenchel begins to
prove three necessary conditions that a quasi-convex function must satisfy in order to obtain the existence
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of a functionF strictly increasing such that = F[¢] is a convex functiony cannot have critical points,
except for those where it reaches its global minimum; foramyD, the quadratic form

Z @i (X)yiy),
i,j

restricted to the hyperplane
> ¢y =0

must be positive semidefinite and the rank of the same unconstrained quadratic form is at most
(wherer — 1 denotes the rank of the constrained quadratic form); the Féte)/F’(r) must satisfy

a boundedness condition from below. The same conditions, as a whole, are also sufficient. Here the
comparison with de Finetti can be referred only to a note, where the Italian mathematician made a hint
toward the differentiable case. We have already remarked that his argument—a quasi-concave function
is concavifiable if it has its first and second derivatives bounded—is not convincing, besides the old
terminology used there. Also, Fenchel expressed the same doubts. De Finetti’s result, if it were correct,
would be in contraposition with his own necessary and sufficient condition, because it is based just on the
regularity ofgp. A more careful analysis reveals the weakness of the remark of the Italian mathematician;
the words by Fenchel are, as usual, really moderate: “apparently de Finetti had overlooked the fact that
the smoothness a@f does not imply the smoothness of the support functitn t).”

4. John von Neumann

In the introductory section we mentioned some puzzles on priority. The traditional attribution of
the notion of quasi-concavity to de Finetti and Fenchel is substantially correct; nevertheless, a first
formalization appeared 20 years before in a famous work by a mathematician who played an important
role in the history of 20th century mathematics.

We are referring to von Neumann [1928], based on a conference held two years earlier on December
at the Mathematical Society of Géttingen. These were the “German years” of von Neumann. Born in
Budapest in 1903, he received a degree in chemical engineering in Zurich in 1926 and in the same year
he obtained a doctorate in mathematics at the University of Budapest. In the academic year 19261927 he
moved to Germany, where he became Privatdozent at the University of Berlin and obtained then a grant
from the Rockefellar Foundatiorthat allowed him to study with Hilbert at Gottingen. Von Neumann
moved to the United States just at the beginning of the 1930s. In 1931 he was a professor at Princeton
University; in 1933 he became a member of the mestitute for Advanced Study Princeton.

The work of 1928 has a relevant place in the unusually wide range of works by von Neumann, who
had already offered fundamental contributions in fields very different one from another: from quantum
mechanics to algebra, from measure theory to ergodic theory, from economics to game theory, from
hydrodynamics to meteorology. “Zur Theorie der Gesellschaftspiele” may be considered a work in
“applied” mathematics, where (in an economic environment) modern topological instruments are used,
such as fixed point theorems, far from the traditional techniques which made use of geometric intuition
and calculus. Here we find the intentional development of a new way to treat mathematical economics
that can reduce the gap with other disciplines: “Economics is simply still a million miles away from the
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state in which an advanced science is, such as physics” [Morgenstern, 1976, p. 810]. Hilbert's program
comes to life, with the principle that to establish new foundations for a discipline, a system of coherent
axioms should be characterized.

The work begins with the definition of a “game of strategy,” expressed through a series of “rules” that
are just a primary elaboration of the modern concept of extended form of a game. The subject of the
theory of games is clearly explicated: “We shall try to investigate the effects which the players have on
each other, the consequence of the fact (so typical of all social happenings) that each player influences the
results of all other players, even though he is only interested in his own.” Von Neumann uses the monetary
value as pay-off function, even if, in a footnote, he makes a hint as to the objections that might be raised
against such a choice; his position on the debate over utility is actually measured: “the difficulties that
form the subject of our consideration are of a different nature.”

In the first paragraph the definitions of strategy and of normal form of a game immediately introduce
not only a simplification in the structure of the game, but also a change in perspective. The dynamic
element and the possibility to follow the evolution of the game disappear, and time is compressed to the
single instant when the game is solved.

There is a normative aim: von Neumann studies the optimal behavior of every player, starting from
the case (considered in Paragraph 2) of a zero-sum game between two players. Here the formulation of
the theorem of minimax is almost immediate, if you consider the matrix of the ganibe elements of
its ith row denote the amount won by the first player, usingthistrategy, corresponding to any possible
strategy chosen by the opponent; analogously, the elements ghtiselumn represent the loss obtained
by the second player when he uses ftte strategy, in correspondence with every possible choice of his
opponent. Following a maximum prudence criterion, for any possible strategy, each player considers the
worst situation that can happen to him; so the first player calculates the minimum on every row, while the
second player calculates the maximum on every column. The quantityma;; is the lower bound
to the value that the fist player can obtain, while primax a;; represents a roof over the losses possibly
inflicted to the second player. Obviously, for any rational solution of the game, the waliuthe amount
won by the first player (and therefore the loss of the second one) will satisfy the following inequalities:

maxming;; < v < minmaxa;;.
i J J i

Whenever the inequalities hold as equalities, the game is solved; otherwise, an equilibrium can never
be reached. In the last case, von Neumann suggests a “trick”: he introduces the concept of a mixed
strategy as a probability distribution on the set of pure strategies and proposes to value the whole game
through an expected value; if we denotexbgind y the mixed strategies chosen by the two players, the
value of the game is Ay, whereA is the pay-off matrix. So the solution of the game is equivalent to a
saddle point of a bilinear form.

Now the formalization of the problem is complete and von Neumann proves (in Paragraph 3) the
minimax theorem, which is the main result of this work. In fact, a previous formalization of this result
(together with the notion of mixed strategy) had already been published in Borel [1924]. This issue is well
known, and we refer to Dell’Aglio [1995] for a complete analysis of the relationships between the two
different approaches. While Borel starts from the particular case of two strategies and by the unsuccessful
effort to extend his result he is led to conjecture a lack of general validity of the theorem, von Neumann
studies the problem in a very general environment. Moreover he makes assumptions much less restrictive
than those that usually are verified in the setting of the theory of zero-sum games. First he studies the
properties of a function (x, y) that are useful in the proof. Indeed, he proves that,i# continuous and
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satisfies the property
if h(x',y) >aandh(x”,y) > «a,
theni(x,y) > aforany 0<r <1, x =tx'+ (1 —t)x";
if h(x,y) <aandh(x,y”) <a,
thenh(x,y) <aforany 0<r <1, y=1ty' + (1 —1)y”",
then it holds that

(K)

max min hA(x,y)= min max h(x,y).
xi=20  y;=> yj= x; =0
2xi=13y;=1 Yyi=1 X xi=1

The reason the paper by von Neumann is so important for the history of generalized convexity is
now apparent. Property (K), which is always satisfied in the particular case wher bilinear form,
is nothing but the requirement on the functibnof quasi-concavity in the variable and of quasi-
convexity in the variabley. Such definitions are introduced by von Neumann as technical conditions.
There is no hint to the relationships with the convex case, nor the class of functions defined by
condition (K) is studied. This property simply allows von Neumann to reduce the problem, through
successive projections, to the bi-dimensional case and afterward to assess the convexity of the solution
sets of the problems mjik(x, y) and max i (x, y).

The proof of the theorem of minimax contains an extension of Brouwer’s fixed-point theorem to the
case of multivalued mappings: I1&f be a closed point-to-set mapping (i.e., its graph is a closed set),
defined on the real intervg, 1] and with value on closed intervals [, 1], then a point® exists such
thatx® e H (x°). The link of the minimax theorem with the fixed points of point-to-set maps is immediate.

Let F(x) = argmin, i(x, y) andG(y) = argmax h(x, y), then the equality

maxminhi(x, y) = minmaxh(x, y)
X y y X

is equivalent to the existence of a poinf, y°) € G(y°) x F(x9).

This approach abounds in seminal ideas that anticipate subsequent results. One can already foresee the
notion of “best reply” that will lead to the idea of Nash equilibrium (1951), a starting point for the whole
theory of non-cooperative games. On the other hand, working in a more general setting than the one
strictly necessary to reach the aim, von Neumann opens a way to the results of Ky Fan and Nikaido on
the fixed-point theorem and on the minimax theorem. In these subsequent developments, the link with the
theory of games will be somehow preserved, as itis evidenced in the use of the bibliographic references in
Nikaido [1954]. Moreover, the theorems of minimax will lead to develop or to deepen various notions of
generalized convexity—see, for instance, Ky Fan [1954] for the definition of convexlikeness and Nikaido
[1954] for quasiconvexity—and the first efforts to compare the various classes of generalized convex
functions will be developed.

The work by von Neumann ends with the study of the three-player case and, more generally, of the
n-player caserd > 3). By means of the concepts of coalition and of characteristic function, a basis for
the theory of cooperative games is set and the problem is simplified to resume the conclusions of the case
n = 2 already solved.

The impact of von Neumann with economics and game theory will not be isolated. In [von Neumann,
1937] he introduces a new model of general equilibrium. It is formulated as a system of linear equalities
and inequalities that may be considered, in some sense, a precursor of linear programming and activity
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analysis, as Kuhn and Tucker acknowledge in Kuhn and Tucker [1958]. The relationship between this
model and the theorem of minimax is close: the existence of an equilibrium point corresponds to the
solution of a suitable zero-sum two-players game. This work will stimulate O. Morgenstern to collaborate
with von Neumann on a fundamental book on game theory that will be published in 1944: “Theory of

Games and Economic Behavior.” In von Neumann and Morgenstern [1944], the proof of the minimax
theorem is changed, following the ideas introduced in Ville [1938]. The authors use linear algebra
methods instead of a fixed point technique and the quasi-concavity assumption disappears.

5. Conclusions

Generalized convexity is by now a common instrument in many mathematical areas and, in particular,
in optimization. It is a typical mathematical concept, especially appreciated by those mathematicians
whose work overlaps with economics and social sciences. Our historical analysis proves that in the
rising of the notion of quasi-concavity these features are present since the beginning. The works by
von Neumann and by de Finetti are works of applied mathematics (with reference to mathematical
economics and, chiefly, to decision theory), not in the sense that a mathematical theory is subsequently
applied to another discipline, but that in a unitary framework the main ideas of utility theory are strictly
interwoven with their mathematical development.

The study of von Neumann’'s “Zir Theorie der Gesellschaftspiele” has led us to verify that the
first formulation of quasi-concavity is actually due to the Hungarian mathematician, in 1928, with
an important feature: the notion is not introduced as a definition, almost a premise to the study of a
specific functional class, but as a simple technical hypothesis (condition (K)) useful to prove the famous
minimax theorem. From this point of view, the comparison with the more “modern” (not only in a
chronological sense, but also in terms of expository standards) Fenchel is enlightening. Therefore, the
first formulation of the concept of quasi-concavity is not due to de Finetti, but there must be credited to
him the consciousness of its relevance for economic applications and an organic analysis that is developed
with the intuitive style characteristic of Italian mathematics in the first half of the previous century.

References

Arrow, K., 1970. Essays in the Theory of Risk Bearing. North-Holland, Amsterdam.

Ascoli, G., 1935. Sulle minime maggioranti concave e I'analisi delle funzioni continue. Ann. Scuola Norm. Sup. Pisa, 251-266.

Avriel, M., Diewert, W.E., Schaible, S., Zang, I., 1988. Generalized Concavity. Plenum, New York.

Bonnesen, T., Fenchel, W., 1934. Theorie der Konvexen Kdrper. Springer-Verlag, Berlin.

Borel, E., 1924. Nota IV. In: Eléments de la Théorie des Probabilités, third ed. Hermann, Paris, pp. 204—221.

Daboni, L., 1987. Bruno de Finetti—Necrologio. Boll. Unione Mat. Ital. Ser. VII I-A (2), 283-308.

Debreu, G., 1976. Least concave utility functions. J. Math. Econom. 3, 121-129.

Dell’Aglio, L., 1995. Divergences in the history of mathematics: Borel, von Neumann and the genesis of game theory. Riv. Stor.
Sci., 1-46.

Fenchel, W., 1953. Convex Cones, Sets and Functions. Princeton Univ. Press, Princeton, NJ.

de Finetti, B., 1935a. |l tragico sofisma. Riv. Ital. Sci. Econom. 7, 362—-382.

de Finetti, B., 1935b. Vilfredo Pareto di fronte ai suoi critici odierni. Nuovi Studi di Diritto, Economia e Politica 4—6, 225-244.

de Finetti, B., 1943. La crisi dei principi e I'economia matematica. Acta Seminarii 2, 33—-68.

de Finetti, B., 1949. Sulle stratificazioni convesse. Ann. Mat. Pura Appl., 173-183.



A. Guerraggio, E. Molho / Historia Mathematica 31 (2004) 62—75 75

de Finetti, B., 1952. Sulla preferibilita. Giornale degli Economisti e Annali di Economia 11, 685-709.

de Finetti, B., 1973. L'utopia come presupposto necessario per ogni impostazione significativa della scienza economica. In:
de Finetti, B. (Ed.), Requisiti per un Sistema Economico Accettabile in Relazione alle Esigenze della Societa. Angeli,
Milan, pp. 13-87.

Giorgi, G., Guerraggio, A., 1998. Ha solo cinquant’anni: la programmazione non lineare. Pristem/Storia. Note di Matematica,
Storia, Cultura 1, 1-31.

Grattan-Guinness, |., 1989. On the prehistory of linear and non-linear programming. In: Knobloch, E., Rowe, D.E. (Eds.), The
History of Modern Mathematics, vol. lll. Academic Press, London, pp. 43-89.

Hadjisavvas, N., Schaible, S., 2001a. Generalized monotone multi-valued maps. In: Floudas, C.A., Pardalos, P.M. (Eds.),
Encyclopedia of Optimization. In: E-Integer, vol. Il. Kluwer Academic, Dordrecht/Boston/London, pp. 224—-229.

Hadjisavvas, N., Schaible, S., 2001b. Generalized monotone single valued maps. In: Floudas, C.A., Pardalos, P.M. (Eds.),
Encyclopedia of Optimization. In: E—Integer, vol. Il. Kluwer Academic, Dordrecht/Boston/London, pp. 229-234.

Hiriart-Urruty, J.B., Lemaréchal, C., 1993. Convex Analysis and Minimization. Springer-Verlag, Berlin.

Jensen, J.L.W.V,, 1905. Om konvexe funktioner og uligheder mellem midelvaerdier. Nyt Tidsskr. Math. B 16, 49—69.

Kannai, Y., 1977. Concavifiability and construction of concave utility functions. J. Math. Econom. 4, 1-56.

Kjeldsen, T.H., 2000. A contextualized historical analysis of the Kuhn—Tucker theorem in nonlinear programming: The impact
of World War Il. Historia Math. 27, 331-361.

Kuhn, H.W., Tucker, A.W., 1958. John von Neumann’s work in the theory of games and mathematical economics. Bull. Amer.
Math. Soc. 64 (3), 100-122.

Fan, Ky, 1954. Fixed points and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. USA 38,
121-126.

Morgenstern, O., 1976. The collaboration between Oskar Morgenstern and John von Neumann on the theory of games.
J. Econom. Lit. 14 (3), 805-816.

von Neumann, J., 1928. Zur Theorie der Gesellschaftspiele. Math. Ann. 100, 295-320.

von Neumann, J., 1937. Uber ein Okonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen
Fixpunktsatzes. Ergebnisse eines Mathematisches Kolloquiums 8, 73-83.

von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behavior. Princeton Univ. Press, Princeton, NJ.

Nikaido, H., 1954. On von Neumann’s minimax theorem. Pacific J. Math. 4, 65-72.

Pratt, J., 1964. Risk aversion in the small and in the large. Econometrica 32, 122-136.

Schaible, S., Ziemba, W.T., 1981. Generalized Concavity in Optimization and Economics. Academic Press, New York.

Ville, J., 1938. Sur la théorie génerale des jeux ou intervient I'habileté des joueurs. In: Borel, E. (Ed.), Traité du Calcul des
Probabilités e de ses Applications IV, 2. Gauthier-Villars, Paris, pp. 105-113.

Weintraub, E.R., 1992. Toward a history of game theory. In: History of Political Economy, vol. 24. Duke Univ. Press,
Durham/London.



	The origins of quasi-concavity: a development between mathematics and economics
	Introduction
	Bruno de Finetti
	Werner Fenchel
	John von Neumann
	Conclusions
	References


