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Abstract

The origins of the notion of quasi-concave function are considered, with special interest in some work b
von Neumann, Bruno de Finetti, and W. Fenchel. The development of such pioneering studies subsequ
to a whole field of research, known as “generalized convexity.” The different styles of the three authors
various motivations for introducing quasi-concavity are compared, without losing sight of economic appli
characteristic of the whole field of generalized convexity.
 2003 Elsevier Inc. All rights reserved.

Sommario

Il lavoro considera le origini della nozione di funzione quasi-concava, con particolare riguardo ad alcuni s
John von Neumann, di Bruno de Finetti, e di W. Fenchel. Lo sviluppo di tali studi pionieristici ha successiva
consentito lo sviluppo di un intero campo di ricerca detto “convessità generalizzata.” I diversi stili dei tre
e le differenti motivazioni che hanno portato all’introduzione della quasi-concavità vengono confrontati
perdere di vista il riferimento alle applicazioni economiche che costituiscono una caratteristica in tema di co
generalizzata.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The first modern formalization of the concept ofconvex functionappears in Jensen [1905]. Since th
at first referring to “Jensen’s convex functions,” then more openly, without needing any explicit refe
the definition of convex function becomes a standard element in calculus handbooks.

A function f :C ⊆ Rn → R, whereC is a convex set, is said to beconvexwhen the following
inequality holds, for anyx, y ∈ C and for anyt ∈ [0,1]: f (tx + (1− t)y) � tf (x) + (1− t)f (y). If the
reverse inequality holds, i.e.,−f is convex, the functionf is said to beconcave. Such a definition (which
is based upon the three pointsx, y, andtx+ (1− t)y) becomes simpler when we consider a smaller c
of functions. A differentiable function is convex whenever,∀x, y ∈ C, the following inequality, whose
geometric meaning is apparent, holds:f (x) − f (y) � ∇f (x)(y − x). Moreover, a twice differentiabl
function f is convex whenever,∀x ∈ C, d2f (x) � 0; the last inequality extends, in a natural way,
elementary rule that studies the convexity of a real function of a real variable through the sign
second derivative.

We shall not mention the importance and the applications of a basic instrument such as conve
just give some hints on the topics that will be brought up later. Convexity is one of the most freq
used hypotheses in optimization theory. It is usually introduced to give global validity to propos
otherwise only locally true (for convex functions, for instance, a local minimum is also a g
minimum) and to obtain sufficiency for conditions that are generally only necessary, as with the cl
Fermat theorem or with Kuhn–Tucker conditions in nonlinear programming. For the history of
and nonlinear programming one can turn to Grattan-Guinness [1989], Giorgi and Guerraggio
Kjeldsen [2000]. In microeconomics, convexity plays a fundamental role in general equilibrium t
and in duality results. In particular, in consumer theory, the so-called convexity of preferences e
the existence of a demand function; moreover, in production theory, the convexity of the producti
(which eliminates increasing marginal returns) ensures the existence of an equilibrium produc
decision theory, the concavity of the utility function corresponds to risk aversion for the agent. In
theory, convexity ensures the existence of an equilibrium solution: the introduction of the funda
notion of a mixed strategy corresponds to a convexification of the strategy set. For a historical ref
see, e.g., Weintraub [1992].

In the past century, the notion of a convex function has been generalized in various ways, e
an extension to abstract spaces, or by a change in the inequalities presented above. One of
recent generalizations, for instance, is due to M.A. Hanson, who introducedinvex functionsin the 1980s:
f :Rn → R is invex whenever it is differentiable and there exists a functionη :Rn × Rn → Rn such
thatf (x) − f (y) � ∇f (x)η(x, y). A more classical extension of convexity, only partially compara
to invex functions, is the class ofquasi-convexfunctions. At an intermediate level of generality (at le
in the continuous case) we mentionpseudo-convex functions. These classes can be characterized thro
the generalized monotonicity of gradient maps; see Hadjisavvas and Schaible [2001a, 2001b].

Many important properties of convex functions are preserved within a wider functional environ
If f is convex, its lower level setsAk = {x ∈ C :f (x) � k, k ∈ R} are convex; the converse implicatio
does not hold true, as it is apparent in the case of a monotone function of a real variable. The sam
true in the concave case, referring to the convexity of the upper level setsBk = {x ∈C :f (x) � k, k ∈R}.
Quasi-convex (quasi-concave) functions are characterized by the last property: they are those f
whose level setsAk (Bk) are convex or, equivalently, those functions that satisfy the following (t
points) condition:∀x, y ∈ C, ∀t ∈ [0,1], f (tx + (1 − t)y) � max{f (x), f (y)}, (f (tx + (1 − t)y) �
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min{f (x), f (y)}). It is easily seen that, in the case of real functions of one real variable, every mon
function is quasi-convex (and quasi-concave). The description of the class of quasi-convex fu
and of their properties is developed following the same pattern as in the convex case; for differe
functions, instead of considering the inequalityf (y) − f (x) � ∇f (x)(y − x), it is enough to require
that∇f (x)(y − x) � 0 imply f (y)− f (x) � 0.

We do not mention other variations on the topic of generalized convexity here. Thus we re
Schaible and Ziemba [1981] and Avriel et al. [1988]. All the definitions follow a pattern that reprod
the relationships among convex, strictly convex, and strongly convex functions where some
properties are preserved.

In this paper we wish to analyze the first contributions to quasi-concavity, either to pinpoint the r
such a notion was introduced or to describe how the same idea of a quasi-concave function h
developed following different routes. Its history develops along the second half of the last centu
we find some puzzle, even on priority.

2. Bruno de Finetti

Bruno de Finetti (1906–1985) is one of the mathematicians whose name is usually linked
introduction of the class of quasi-concave functions. In 1949—the year of publication of his work
stratificazioni convesse” [de Finetti, 1949]—de Finetti was a full professor of financial mathem
at Trieste. He obtained his degree in “applied mathematics” in 1927 in Milan, where he attend
courses in economics held by Ulisse Gobbi at the Politecnico. Then he worked first in Rome
mathematical department of the “Istituto Centrale di Statistica” and subsequently in Trieste, as
in a major insurance company. In the years between the two wars de Finetti conceived the ma
that would make him a protagonist in modern probability theory: first the subjective approach, th
study of exchangeable processes and a formulation of the general theory of processes with inde
increments. We limit ourselves to giving just some chronological references in order to emp
the preeminent role played by this young researcher in the field of probability theory. For a d
bibliography on the work of de Finetti, see also Daboni [1987]. Between 1928 and 1930 the j
Rendiconti dell’Istituto Lombardopublished some articles stimulating controversy between de F
and Fréchet about the hypothesis ofσ -additivity. In 1937, theAnnales de l’Institut M. Poincarépublished
the text of a cycle of five lessons held at the Institute two years before, where de Finetti state
almost final version his subjectivist point of view on probability. Moreover, in 1937, de Finetti is am
the protagonists of theColloque consacré à la theorie des probabilités, organized by the University o
Genève in the frame of a series of meetings held yearly in order to examine a given subject thor
In the same years de Finetti was an outstanding figure in the Italian mathematical world. He w
of the first scholars to study the applications of mathematics to economic and social sciences. T
with masters such as Guido Castelnuovo and Francesco Paolo Cantelli, he may be considered o
founders of the Italian school of probabilistic studies. He devoted special attention to the methodo
aspects in his studies: he declared the importance of abstract and general research, in order to
deeper understanding of social behavior. Contemporary Italian mathematicians, influenced by a
going back to the 17th century, hesitated to follow the modern algebraic formal methods. Besid
cultural atmosphere urged the development of a pragmatic science, devoted to solve the real pro
the country, and de Finetti himself had never forsaken a social conscience.
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In the 1930s, when the fascist dictatorship took hold in Italy, de Finetti saw in the new gover
the revolutionary possibility of creating a “third way,” superior both to liberalism and to socialism
refusal of every compromise with the new liberal world allowed him to conceiveex novoa globally
fascist idea of life (and of economy): “in the free-trade economy the individual is subject to the s
that presupposes egoism and compels to egoism even those who understand that the result of a
is chaos and ruin; only the discipline of an outer command may rescue one from the slavery of fr
from the slavery of anarchy” [de Finetti, 1943, p. 48]. The 1929 depression was experienced
unambiguous sign of the crisis of the system and of the defeat of economic theory, not fit to a
for the new phenomena: “it is already too evident that the doctrine and the system urgently need
revision for anybody to deny it in good faith, unless he lives in the clouds or on a university c
[de Finetti, 1935a, p. 364]. The criticism of the Paretian system, developed on the basis of strong
expectations in a group of articles that introduce the themes ofwelfare economics, led him to a position
that was absolutely original in the framework of Italian mathematics in the 1930s: one should “no
up, but increasingly refine the subtle mathematical sharpness that clearly distinguishes Pareto fro
economists, one should let go of the contacts with historical reality instead of holding them fa
should make a cleaner and stricter distinction between science and the assessment of the aim f
one can exploit it” [de Finetti, 1935b, p. 230]. In short, to reach the truth, one should not “give u
too abstract character of Pareto’s ideas to watch reality closer, but, on the contrary, one shou
abstractness more perfectly coherent” [de Finetti, 1935b, p. 230].

In 1954, de Finetti (who was in Trieste when “Sulle stratificazioni convesse” was published) m
to the University of Rome. The institutions had changed. De Finetti changed his political option
kept his attention fixed upon political themes. He assumed a critical tone: “the necessity to design
accomplish a different economic system is urgent not only in answer to the needs of the commu
must be achieved so as to save humanity from self-destruction as well” [de Finetti, 1973, p. 77].

Hereafter we study the work “Sulle stratificazioni convesse,” a technical article issued in 19
“Annali di Matematica Pura e Applicata,” where the notion of quasi-concavity is introduced. It
first time that de Finetti devoted his attention to this topic, even if the main issues of his paper c
a natural setting in the ideas of contemporary mathematicians, always paying attention to soc
economic applications.

The work begins with three problems that we formulate in modern terms:

(a) Is a quasi-concave function concave as well? Or, in the words of de Finetti, “given a family of c
regions, one inside the other or, as we say for the sake of brevity, aconvex stratification, is it possible
to associate a convex functionf (P ) with it, as stated before? or, briefly, is it astratification of a
convex function?”

(b) Assuming a negative answer to the first question, does there always exist, for a given quasi-
functionϕ, an increasing transformationF such that the compositionf = F [ϕ] is concave?

(c) Assuming a positive answer to the second question (considering as equivalent all the fu
z = h + kf , with h, k ∈ R), does a functionF [ϕ] that is theleast concaveexist, i.e., one satisfying
the inequalityF [ϕ] � G[ϕ] for any increasing transformationG such thatG[ϕ] is concave?

In his work, de Finetti uses the term “convex function” to denote what is usually called aconcave
function. In the sequel we will use the modern terminology. Now, we will study the details of de Fin
work and the answers he gives to his own problems, focusing on some inexactnesses and
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may be considered an extreme reliance on geometric intuition (due to his special mathematica
Nevertheless, the originality of his intuitions and the consciousness of the deep connections b
the analytical problems, subjects of the preceding questions, and the economic models shoul
undervalued.

The first paragraph—“Generalities”—containing the enunciation of the three problems men
above, also shows the style and the methods of the whole article (it is de Finetti’s typical mathe
style). In de Finetti’s own words there is reference—immediate and explicit—to the problem
economic analysis. The analysis of what will be called quasi-concavity was suggested to de Fine
utility theory, as the author acknowledges. The discussion of the first problem is justified by the sta
that, in mathematical economics, “it seems to be deemed” that from the convexity of the regions de
from the indifference varieties the concavity of the utility index necessarily follows. The second pr
makes an implicit reference to the dispute betweenordinalistsandcardinalists. The basic assumption o
the utilitarian revolution was the rational behavior of the consumer, who was considered to be a
rank his needs; it seemed that the existence of a function (of consumable goods) that measure
was unavoidable. This fundamental concept—utility—was then defined as a measurable quantit
cardinal sense, unique but forlinear increasing transformations. But, at the end of the 19th cen
Pareto’s work appears with a new awareness that will lead to the ordinalist paradigm proposed b
and Allen (1934). They say that it is not at all necessary to assume the cardinal measurability of
utility is just the expression of the preferences of the consumer, represented by the indifference
of the agent (the level sets of the function), unique but formonotoneincreasing transformations. In th
second problem, the author wonders if in the class of functions that represent the utility of the con
there is a concave function.

So the idea of a quasi-concave functionf , which represent a “convex stratification,” for which “th
regions defined by the inequalityf (p) � c obviously make up (as the constantc changes) a family o
convex regions” is not based merely on formal reasons, with a subsequent application and exemp
in economic analysis—almost to prove the significance of the mathematical procedure. On the c
in de Finetti the introduction of quasiconcavity is justified by economic theory. We can say, with
emphasis, according to the spirit of de Finetti’s work, that generalized convexity has been inti
connected with utility theory since it began.

Afterwards the topic is developed in strictly mathematical terms. The formal level is charact
by the strong presence of intuition and of geometric methods and language. Geometric terms
“bottlenecks,” “infinitely thin layers,” “contours,” and “indentations” are present. For the sake of cl
the author makes reference to pictures of special cases, in a period when the mathematical
already sufficiently aligned to modern abstract standards. Other propositions are explicitly pro
a geometric way. On the whole, the paper is not segmented into lemmas, theorems, proofs, r
examples, but is the development of a unique subject thought of and “seen” in geometric terms a
written in an analytic language that maintains some hints of the underlying structure, where, e.g
continuity assumption is left out or some proof that is deemed evident and immediate in a geo
three-dimensional intuition is omitted.

In this way de Finetti is able to give an answer to the second question. Generally his ans
negative, but it becomes positive whenever the functionϕ “is assumed to have bounded first and sec
derivatives.” The example, considered in a footnote, of a functionϕ (of one real variable) and of it
transformationf (x) = e−λϕ(x), for which one hasf ′′(x) = −λe−λϕ(x)[λ(ϕ′(x))2 − ϕ′′(x)], shows that
concavity off is ensured if one takesλ “large enough” (λ > ϕ′′(x)/[ϕ′(x)]2), but this is true ifϕ′′ is
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bounded andϕ′ is far from zero. Another doubtful point is the sentence concerning the domain o
functions considered. De Finetti says that every remark will refer to finite-dimensional spaces,
its extension to the infinite-dimensional case is not a problem. What you have to do is “to give
is not a clear remark—those conclusions arising from the possibility of considering maxima inst
suprema.”

If we go back to the three main problems of the paper, we find that a generally negative ans
the first two problems is given immediately, through some geometrical examples: there are some
stratifications that are not stratifications of concave functions; moreover, the concavification of a
concave function “would not be true if some restriction were not imposed.” Now, taking for grante
such restrictions are implicitly imposed to be certain that the class of concavifying transformat
nonempty, de Finetti devotes himself to the third question. Here there is no direct reference to ec
problems, but during the same years de Finetti worked on the utility theory, where he emph
the relevance of the notion of relative concavity (see, e.g., de Finetti [1952]). These ideas wo
developed later, when the notion of risk aversion was introduced by Pratt and Arrow [Pratt,
Arrow, 1970], and their relation to concavity would be developed. An economic agent is risk-averse
only if his utility function is concave and its “concavity degree” represents a measure of risk-avers

The first step in the construction of the least concave function is a lemma concerning the cons
of the least concave function greater than a given functionψ defined on a setC: “let f (P ) =
sup.

∑
h λhψ(Ph) where the supremum is calculated considering all the possible expressions oP =∑

k λkPk as a linear combination with coefficientsλk > 0 of any (finite) number of pointsPk of C; it
results thatf (P ) is convex and that, on the wholeC, f (P )� ψ(P ), while f (P )� ϕ(P ) wheneverϕ is
any other convex function� ϕ(P ).” In de Finetti’s opinion “the proof is obvious,” so it is omitted. Fro
a modern point it is not so trivial. As a matter of fact, in a recent monograph onconvex analysis[Hiriart-
Urruty and Lemaréchal, 1993] we can find the following theorem (Proposition 2.5.1, I, p. 169)
g :Rn → R ∪ {+∞}, not identically+∞, be minorized by an affine function: for some(s, b) ∈ Rn ×R,
g(x) � (s, x) − b, for all x ∈ Rn. Then, the following three functionsf1, f2, f3 are convex and coincid
onRn:

f1(x) = inf
{
r: (x, r) ∈ co epig

}
f2(x) = sup

{
h(x): h ∈ ConvRn, h� g

}
f3(x) = inf

{
k∑

j=1

αjg(xj ): k = 1,2, . . . , α ∈$k, xj ∈ domg,

k∑
j=1

αjxj = x

}
.”

The meaning of the symbols is apparent:coepig, ConvRn, domg are, respectively, the smalle
convex set containing the epigraph of a functiong, the set of convex functions defined onRn, and
the effective domain of the functiong. If such modern language is translated into de Finetti’s ter
it can be immediately seen that the preceding theorem is nothing but de Finetti’s lemma (which d
consider the functionf1), with one, or better yet, two differences: the proof given by Hiriart-Urruty
Lemaréchal is longer than one page and, moreover, there is an assumption that is ignored by d
(and not replaced by anything else). And it is an essential hypothesis, as can easily be seen by co
the functiong(x) = x3; there exists no affine minorizing function forg, and the three functionsf1, f2,
andf3 are identically−∞.

The monograph by Hiriart-Urruty and Lemaréchal was published only recently, but de Finet
the possibility of realizing that he needed a hypothesis or, in someway, doubting of the gener
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his result. In [Ascoli, 1935] a preceding work was quoted on the minimal nondecreasing function
than a given real function defined on an interval[a, b]. Ascoli was a known mathematician in Italy, even
not first rank; moreover, he published his note in a prestigious journal, whose fame was well-esta
The work is based on a theorem—well emphasized—where the least concave (continuous) fun
constructed greater than anyboundedfunction on an interval[a, b]. The boundedness assumption j
allows Ascoli to assert the existence of majorizing linear functions.

De Finetti’s lemma is followed by “two different procedures to construct a least convex func
The former is an iterative procedure, which uses the preceding lemma and may be resumed as
Given the (convex) indifference varieties of a functionϕ defined on an affine spaceS, with minϕ = a,
maxϕ = b, take the functionϕ0(P ) as follows,

ϕ0(P ) =
{
a, ϕ(P ) �= b,

b, ϕ(P ) = b,

whereP ∈ S.
The functionϕ1 is given by the preceding lemma, so it is the least concave function greater thϕ0;

we can buildϕ2 by considering the least function greater thanϕ1 and constant whereϕ was constant. We
can now iterate this procedure and we build two sequences of functions:{ϕ2k+1} is a sequence of concav
functions, while{ϕ2k} is constant whereverϕ is constant. The existence of the limit of{ϕk}, for k → +∞,
is ensured by monotonicity. The limit functionf is what we were looking for, since it is concave (it
the limit of the concave functionsϕ2k+1) and it is “constant on the prescribed level varieties” (it is
limit of the functionsϕ2k). De Finetti just fears the circumstances that can render the geometric proc
described above, or the situations that “prevent the existence of the convex function one was loo
(or better: that make it degenerate into a constant).” But the only degenerate solution isϕ(x) ≡ b; as a
matter of fact, if it were the case thatϕ(x) = c, even only on a set containing an interior pointQ, from
ϕ(P ) = b > c andϕ(R) = c (whereR is a point of the segmentPQ beyondQ) it would follow that
ϕ(Q) = tϕ(P )+ (1− t)ϕ(R) > tc + (1− t)c = c.

The latter is a more analytical procedure for the construction of a least concave function. First de
proves a necessary and sufficient condition, which implicitly confirms the negative answer given
first problem: a quasi-concave functionϕ is concave if and only if all its profilesϕξ are concave, wher
the functionϕξ is defined through the linear transformationsξ : ϕξ (x) = supP ϕ(P ), ξ(P ) = x. In a hint
contained in a footnote, the proof brings forward the notion of the subgradient of a convex fun
introduced by R.T. Rockafellar in the 1970s. We can find some inexactness (for instance, the m
of ϕ are treated without having ensured their existence and, in particular, the boundedness of
closed set). Later the concavity condition on the profiles is rewritten equivalently, through a fun
inequality, by the use of Rademacher’s theorem (1919) that de Finetti exploits in a special fo
without any explicit quotation: a concave function is “derivable except for at most a numerable i
of cusps.” The least concave function is the function that satisfies this inequality in the limit c
equality, i.e., solves the differential equationϕ′

ξ (x) = kWx(x1, x), with k = ϕ′
ξ (x1) andWx built through

elements ofϕ, and is therefore characterized by the following profiles:

ϕξ (x) = h+ k

x2∫
W(x1, u)du.
x1
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The second procedure (the more analytical one) for constructing the least concave function is
in the fifth paragraph, where de Finetti remarks, without proof, that “it is useful to remark, as a cor
the following characteristic of least convex functions: if and only ifϕ is the least convex function
f = F [ϕ] is convex only ifF is increasing and convex.”

This property leads us to treat a recent contribution [Debreu, 1976]. Debreu studies the third p
of de Finetti, whom he quotes explicitly, with a formally different definition of the least concave func
He defines a preorder on the setU of continuous, concave, real-valued functions onX representing the
same stratification:v is more concave thanu if there is a real-valued, concave functionf on u(X)

such thatv = f (u). Actually the two notions are equivalent, as Debreu himself proves by constru
the minimal element according to his own definition. This coincidence was already stated by de
without any proof. In Debreu’s work it is emphasized in a long and complex proof. Another autho
studied the second problem of de Finetti, i.e., the concavificability of a convex stratification, is Y. K
The concavificability conditions which are the main result of his works—see, e.g., Kannai [19
follow some results by W. Fenchel, who first carried on some original ideas by de Finetti; moreov
concave function, which results from the concavification procedure proposed by Kannai in his
is the least concave function representing the convex stratification. Once again, we have to focu
heavy assumptions that Kannai makes in order to prove his results.

3. Werner Fenchel

The works where the notion of quasi-concavity (or quasi-convexity) is quoted and where som
to its origins is made usually make reference to the name of Werner Fenchel. Actually his monog
Convex Cones, Sets and Functions[Fenchel, 1953]—is the second published work where quasi-co
functions are studied but it is the first one where this word is explicitly used.

Werner Fenchel (1905–1988), born in Berlin, after obtaining a degree in mathematics, took t
steps of his academic carrier in Göttingen, as an assistant of E. Landau. After some months spen
to a scholarship, in Rome with T. Levi-Civita and in Copenhagen with H. Bohr and T. Bonnese
went to Denmark—with a pause in Sweden—to escape the rise of Nazism. In Denmark he taught
Technical School and at the University of Copenhagen until 1974. The monograph we will consid
written in the brief American period (from 1949 to 1951), when he visited the University of Sou
California, and then Stanford and Princeton. In the last university, Fenchel was invited by A.W. T
to hold a series of seminars on convexity, which offered him hints and materials for the book he
publish in 1953. It is not by chance thatConvex Cones, Sets and Functionsbegins with acknowledgmen
to “Professor A.W. Tucker” (and to H.W. Kuhn, for his “critical remarks”) for drawing his attentio
the work of de Finetti and to the concavifiability problem. Fenchel published about 50 works o
and complex analysis, on convex analysis, on geometry, and on differential geometry; the mon
on theTheorie der Körper[Bonnesen and Fenchel, 1934]—translated into English, published in va
editions, and quoted by de Finetti—may be regarded, together withConvex Cones, Sets and Functio,
as his most significant publication.

Convex Cones, Sets and Functionsis divided into three chapters, whose topics appear in the title. E
subject is developed in finite-dimensional spaces and a special attention is devoted to “results
applications in the theory of games and in programming problems.” But, in spite of this setting,
might lead to a mainly “applied” approach, the structure and the style of Fenchel’s work are com
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different from what we found in de Finetti’s. Here, the distinction between the original problem
the theory, which is developed with the aim to solve it, is just a fact. The possible applications a
mentioned, in fact, in theIntroduction; afterwards the theme is developed in total autonomy, just b
on the principle of its own organic unity, and it is much easier to follow than in de Finetti, with a r
closer to the modern standard.

We are directly interested in the seventh and the eighth paragraph of the third chapter. They st
the same issue as the second problem of de Finetti in terms of convex functions. Fenchel, wh
interested in the existence and construction of most convex functions, considers the lower level s
lower semicontinuous real-valued functionϕ (defined on a convex setD ⊆ �n) and immediately obtain
some of their properties. Now he wonders whether, “conversely,” such a family of setsLτ (indexed by a
real number and satisfying the same properties) may be consideredin some sensegenerated by a conve
function: “under what conditions is a family of setsLτ satisfying I–IV transformable into the family o
level sets of a convex function.” The conditions I–IV are

I
⋃
τ

Lτ = D,

II τ1 < τ2 impliesLτ1 ⊂ Lτ2,

III
⋂
τ>τ0

Lτ = Lτ0,

IV Lτ is a closed set,

while the previously quoted transformation is made through a continuous and strictly increasing fu
This is nothing but the second problem issued by de Finetti, with some continuity requirements th
not explicitly made in his work but that in fact were geometrically considered. Conditions I–IV ar
sufficient, nor do they become sufficient even if we add the obvious requirement that the setsLτ are
convex. Here Fenchel introduces the term “quasi-convexity,” enunciating and proving for the firs
the equivalence of the two definitions that we recalled in our Introduction.

Paragraph 7 is developed through a group of necessary and sufficient conditions to ensure that
of convex sets (satisfying the above-mentioned properties) is the family of the lower level sets of a
function. The first of these characterizations states that a quasi-convex function is convex if and
the inclusion

λLτ0 + (1− λ)Lτ1 ⊂ Lτλ,

holds, whereλ ∈ [0,1] andτλ = λτ0 + (1− λ)τ1. In force of this necessary and sufficient condition (a
of other propositions, which make use of “modern” instruments of convex analysis, such as thesupport
functionand theasymptotic cone), Fenchel proves the same necessary and sufficient condition we
in de Finetti on the convexity of the profiles. In de Finetti’s proof we pointed out a lack of exac
in the implicit use of a boundedness assumption on some sets. It is the same remark that, in
notes and in general terms, leads Fenchel to claim the originality of his own procedure and to un
the greater generality of his results (without any direct criticism on the Italian mathematician): “[.
generalization to the case considered here of a result of de Finetti” who always used “the assump
the domainD and, thus, all level sets are compact and convex.”

Paragraph 8 is devoted to the same problem, but under differentiability assumptions. Fenchel b
prove three necessary conditions that a quasi-convex function must satisfy in order to obtain the e
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of a functionF strictly increasing such thatf = F [ϕ] is a convex function:ϕ cannot have critical points
except for those where it reaches its global minimum; for anyx ∈D, the quadratic form∑

i,j

ϕ′′
ij (x)yiyj ,

restricted to the hyperplane∑
i

ϕ′
i(x)yi = 0

must be positive semidefinite and the rank of the same unconstrained quadratic form is atr
(wherer − 1 denotes the rank of the constrained quadratic form); the rateF ′′(τ )/F ′(τ ) must satisfy
a boundedness condition from below. The same conditions, as a whole, are also sufficient. H
comparison with de Finetti can be referred only to a note, where the Italian mathematician mad
toward the differentiable case. We have already remarked that his argument—a quasi-concave
is concavifiable if it has its first and second derivatives bounded—is not convincing, besides
terminology used there. Also, Fenchel expressed the same doubts. De Finetti’s result, if it were
would be in contraposition with his own necessary and sufficient condition, because it is based jus
regularity ofϕ. A more careful analysis reveals the weakness of the remark of the Italian mathema
the words by Fenchel are, as usual, really moderate: “apparently de Finetti had overlooked the
the smoothness ofϕ does not imply the smoothness of the support functionh(ξ, τ).”

4. John von Neumann

In the introductory section we mentioned some puzzles on priority. The traditional attributi
the notion of quasi-concavity to de Finetti and Fenchel is substantially correct; nevertheless,
formalization appeared 20 years before in a famous work by a mathematician who played an im
role in the history of 20th century mathematics.

We are referring to von Neumann [1928], based on a conference held two years earlier on De
at the Mathematical Society of Göttingen. These were the “German years” of von Neumann. B
Budapest in 1903, he received a degree in chemical engineering in Zürich in 1926 and in the sa
he obtained a doctorate in mathematics at the University of Budapest. In the academic year 1926–
moved to Germany, where he became Privatdozent at the University of Berlin and obtained then
from the Rockefellar Foundationthat allowed him to study with Hilbert at Göttingen. Von Neuma
moved to the United States just at the beginning of the 1930s. In 1931 he was a professor at P
University; in 1933 he became a member of the newInstitute for Advanced Studyin Princeton.

The work of 1928 has a relevant place in the unusually wide range of works by von Neuman
had already offered fundamental contributions in fields very different one from another: from qu
mechanics to algebra, from measure theory to ergodic theory, from economics to game theor
hydrodynamics to meteorology. “Zur Theorie der Gesellschaftspiele” may be considered a w
“applied” mathematics, where (in an economic environment) modern topological instruments ar
such as fixed point theorems, far from the traditional techniques which made use of geometric in
and calculus. Here we find the intentional development of a new way to treat mathematical eco
that can reduce the gap with other disciplines: “Economics is simply still a million miles away fro
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state in which an advanced science is, such as physics” [Morgenstern, 1976, p. 810]. Hilbert’s p
comes to life, with the principle that to establish new foundations for a discipline, a system of co
axioms should be characterized.

The work begins with the definition of a “game of strategy,” expressed through a series of “rule
are just a primary elaboration of the modern concept of extended form of a game. The subjec
theory of games is clearly explicated: “We shall try to investigate the effects which the players h
each other, the consequence of the fact (so typical of all social happenings) that each player influe
results of all other players, even though he is only interested in his own.” Von Neumann uses the m
value as pay-off function, even if, in a footnote, he makes a hint as to the objections that might be
against such a choice; his position on the debate over utility is actually measured: “the difficulti
form the subject of our consideration are of a different nature.”

In the first paragraph the definitions of strategy and of normal form of a game immediately intr
not only a simplification in the structure of the game, but also a change in perspective. The d
element and the possibility to follow the evolution of the game disappear, and time is compresse
single instant when the game is solved.

There is a normative aim: von Neumann studies the optimal behavior of every player, startin
the case (considered in Paragraph 2) of a zero-sum game between two players. Here the formu
the theorem of minimax is almost immediate, if you consider the matrix of the gameA. The elements o
its ith row denote the amount won by the first player, using itsith strategy, corresponding to any possi
strategy chosen by the opponent; analogously, the elements of thej th column represent the loss obtain
by the second player when he uses thej th strategy, in correspondence with every possible choice o
opponent. Following a maximum prudence criterion, for any possible strategy, each player consid
worst situation that can happen to him; so the first player calculates the minimum on every row, w
second player calculates the maximum on every column. The quantity maxi minj aij is the lower bound
to the value that the fist player can obtain, while minj maxi aij represents a roof over the losses poss
inflicted to the second player. Obviously, for any rational solution of the game, the valuev of the amount
won by the first player (and therefore the loss of the second one) will satisfy the following inequal

max
i

min
j

aij � v � min
j

max
i

aij .

Whenever the inequalities hold as equalities, the game is solved; otherwise, an equilibrium ca
be reached. In the last case, von Neumann suggests a “trick”: he introduces the concept of
strategy as a probability distribution on the set of pure strategies and proposes to value the who
through an expected value; if we denote byx andy the mixed strategies chosen by the two players,
value of the game isxAy, whereA is the pay-off matrix. So the solution of the game is equivalent
saddle point of a bilinear form.

Now the formalization of the problem is complete and von Neumann proves (in Paragraph
minimax theorem, which is the main result of this work. In fact, a previous formalization of this r
(together with the notion of mixed strategy) had already been published in Borel [1924]. This issue
known, and we refer to Dell’Aglio [1995] for a complete analysis of the relationships between th
different approaches. While Borel starts from the particular case of two strategies and by the unsu
effort to extend his result he is led to conjecture a lack of general validity of the theorem, von Ne
studies the problem in a very general environment. Moreover he makes assumptions much less r
than those that usually are verified in the setting of the theory of zero-sum games. First he stu
properties of a functionh(x, y) that are useful in the proof. Indeed, he proves that, ifh is continuous and
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satisfies the property

if h(x′, y) � α andh(x′′, y) � α,

(K)
thenh(x, y) � α for any 0� t � 1, x = tx′ + (1− t)x′′;

if h(x, y′) � α andh(x, y′′) � α,

thenh(x, y) � α for any 0� t � 1, y = ty′ + (1− t)y′′,

then it holds that

max
xi�0∑
xi=1

min
yj�0∑
yj=1

h(x, y) = min
yj�0∑
yj=1

max
xi�0∑
xi=1

h(x, y).

The reason the paper by von Neumann is so important for the history of generalized conve
now apparent. Property (K), which is always satisfied in the particular case whereh is a bilinear form,
is nothing but the requirement on the functionh of quasi-concavity in the variablex and of quasi-
convexity in the variabley. Such definitions are introduced by von Neumann as technical condi
There is no hint to the relationships with the convex case, nor the class of functions defin
condition (K) is studied. This property simply allows von Neumann to reduce the problem, th
successive projections, to the bi-dimensional case and afterward to assess the convexity of the
sets of the problems miny h(x, y) and maxx h(x, y).

The proof of the theorem of minimax contains an extension of Brouwer’s fixed-point theorem
case of multivalued mappings: letH be a closed point-to-set mapping (i.e., its graph is a closed
defined on the real interval[0,1] and with value on closed intervals of[0,1], then a pointx0 exists such
thatx0 ∈H(x0). The link of the minimax theorem with the fixed points of point-to-set maps is immed
Let F(x) = arg miny h(x, y) andG(y) = arg maxx h(x, y), then the equality

max
x

min
y

h(x, y) = min
y

max
x

h(x, y)

is equivalent to the existence of a point(x0, y0) ∈G(y0)× F(x0).
This approach abounds in seminal ideas that anticipate subsequent results. One can already fo

notion of “best reply” that will lead to the idea of Nash equilibrium (1951), a starting point for the w
theory of non-cooperative games. On the other hand, working in a more general setting than
strictly necessary to reach the aim, von Neumann opens a way to the results of Ky Fan and Nik
the fixed-point theorem and on the minimax theorem. In these subsequent developments, the link
theory of games will be somehow preserved, as it is evidenced in the use of the bibliographic refere
Nikaido [1954]. Moreover, the theorems of minimax will lead to develop or to deepen various noti
generalized convexity—see, for instance, Ky Fan [1954] for the definition of convexlikeness and N
[1954] for quasiconvexity—and the first efforts to compare the various classes of generalized
functions will be developed.

The work by von Neumann ends with the study of the three-player case and, more generally
n-player case (n > 3). By means of the concepts of coalition and of characteristic function, a bas
the theory of cooperative games is set and the problem is simplified to resume the conclusions of
n = 2 already solved.

The impact of von Neumann with economics and game theory will not be isolated. In [von Neu
1937] he introduces a new model of general equilibrium. It is formulated as a system of linear eq
and inequalities that may be considered, in some sense, a precursor of linear programming and
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analysis, as Kuhn and Tucker acknowledge in Kuhn and Tucker [1958]. The relationship betwe
model and the theorem of minimax is close: the existence of an equilibrium point corresponds
solution of a suitable zero-sum two-players game. This work will stimulate O. Morgenstern to colla
with von Neumann on a fundamental book on game theory that will be published in 1944: “The
Games and Economic Behavior.” In von Neumann and Morgenstern [1944], the proof of the m
theorem is changed, following the ideas introduced in Ville [1938]. The authors use linear a
methods instead of a fixed point technique and the quasi-concavity assumption disappears.

5. Conclusions

Generalized convexity is by now a common instrument in many mathematical areas and, in pa
in optimization. It is a typical mathematical concept, especially appreciated by those mathema
whose work overlaps with economics and social sciences. Our historical analysis proves tha
rising of the notion of quasi-concavity these features are present since the beginning. The w
von Neumann and by de Finetti are works of applied mathematics (with reference to mathe
economics and, chiefly, to decision theory), not in the sense that a mathematical theory is subs
applied to another discipline, but that in a unitary framework the main ideas of utility theory are s
interwoven with their mathematical development.

The study of von Neumann’s “Zür Theorie der Gesellschaftspiele” has led us to verify th
first formulation of quasi-concavity is actually due to the Hungarian mathematician, in 1928
an important feature: the notion is not introduced as a definition, almost a premise to the stu
specific functional class, but as a simple technical hypothesis (condition (K)) useful to prove the f
minimax theorem. From this point of view, the comparison with the more “modern” (not only
chronological sense, but also in terms of expository standards) Fenchel is enlightening. Theref
first formulation of the concept of quasi-concavity is not due to de Finetti, but there must be cred
him the consciousness of its relevance for economic applications and an organic analysis that is de
with the intuitive style characteristic of Italian mathematics in the first half of the previous century
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