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THE SUBJECTIVE PROBABILITY ASSESSMENT FOR A SEQUENCE OF BINARY TRIALS MAY
NATURALLY ENFORCE EXCHANGEABILITY OF THE RANDOM VARIABLES. THIS TURNS OUT
TO BE EQUIVALENT TO ASSERTING THAT THEY ARE CONDITIONALLY INDEPENDENT AND
IDENTICALLY DISTRIBUTED BERNOULLI TRIALS IN WHICH THE SUCCESS PROBABILITY
IS A RANDOM VARIABLE. IT FOLLOWS THAT BAYESIAN ANALYSIS MAY PROCEED BY
PLACING PRIOR PROBABILITY DISTRIBUTIONS OVER THE PARAMETERS OF A STANDARD
MODEL.

Subjective probability versus the orthodox view: Consider a sequence of trials each
having a binary outcome, such as the case of tack tossing discussed in class on March 2.
Denote the outcomes by 77,75, ...T,, with T}, say, the indicator that tack ¢ lands on its top
side after being dropped (a success, say). The orthodox analysis of this system treats these
T; as independent and identically distributed Bernoulli trials, having some success probability,
6, say, which represents the long-run relative frequency with which a tack lands on its top
side. Recall the class demonstration. I take tack 1 and prior to dropping it I ask you to
evaluate your P(7T; = 1). Of course in the orthodox view this is #, but in the subjective
Bayesian view, your probability measures your uncertainty in the outcome of this trial. This
probability is based on your understanding of the system, and in principle may be evaluated
by you using available information. Since you may not have repeatedly dropped such tacks,
you do not know 6, and thus # cannot be your P(7T; = 1). Furthermore, different people
(i.e. people with perhaps different understanding of the system) may have different values
for P(T7 = 1). This is not possible in the orthodox view, since the probability is considered
to be an attribute of the experiment itself rather than an expression of the uncertainty of

the observer.

Learning: By observing the outcome of the first trial we have realized T} = t;. In the class
example t; = 0. Now I ask you to evaluate your probability P(7, = 1|7} = 0). This first trial
indeed provides you with some insight into the system, and it may be that your probability
for trial 2 has changed from what it was; i.e. you have learned, and your expression of
uncertainty has changed. Of course, in the orthodox view, 7 and 75 are independent trials,
and so P(T, = 1|T; = 0) = P(T, = 1) = 6. But subjectively we cannot assign such
probability since we do not know 6.

In class we repeated several trials and I asked you to continue to update your probability
for the next trial. You may have found it somewhat difficult to proceed with this updating.



There are many legitimate methods to do so, but one due to George Polya is particularly
simple. Polya’s learning scheme imagines the state of mind of the observer to be equivalent
to an urn containing a 1’s and b 0’s. Uncertainty about the outcome 7} corresponds to the
probability P(T; = 1) = a/(a +b). In this model, learning occurs by adding contents to the
urn. If we observe ¢; = 0, then a 0 is added to the urn, otherwise a 1 is added. The updated
urn represents the state of mind of the observer after having learned what happened on the
first trial. As before, uncertainty about a second trial is based on the urn contents, and
so P(Ty, = 1|Ty = t;1) = (a+t1)/(a+ b+ 1). The degree of belief concerning this second
trial has changed. For instance, if ¢ = b = 1 to start with, then P(7; = 1) = 1/2 and
P(T, = 1|7y = 0) = 1/3. Various values of a and b lead to the same P(T; = 1). They
are distinguished by the sum @ + b which regulates the amount by which your opinion will
be changed. For example, if a + b is very large, then your opinion will hardly change after
realizing a trial. Learning continues through the sequence of trials as above, so that
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Notably, this probability is very close to the observed relative frequency when i is large
compared to a + b. It is an exercise to combine these conditional probabilities and express
the joint probability as:

F(a+0)(s+a)l'(n—s+b)
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Here s = 37 ; t; and I'() is the Gamma function. With integer values of a and b, it suffices
to know that, for example, ['(n + 1) = nl.

Exchangeable Random Variables: Two binary random variables 7}, 75 are exchangeable
if for every pair of realizations (¢1,t3), the joint probability is invariant to permutation; that
is, if P(Ty = t1,Ty = t3) = P(T1 = t3,To = t1). Exchangeability is a property of the
joint distribution of the random variables. Essentially, it is a statement that the labels on
the trials are irrelevant. In the tack example, I labeled the tacks then tossed them in that
order. If I think the labeling in no way affects the trial outcomes, then it is natural to
assume exchangeable random variables. That is, I would prescribe the same collection of
probabilities in a different experiment in which the tack labeled 2 was tossed first. It is
important to note that exchangeable random variables need not be independent. Indeed,
you may confirm this in the Polya sequence above. However, it is also easy to check that
exchangeable random variables, though possibly correlated, have equal distributions. That
is, you should be able to show that P(T} =t) = P(T, = t) for all t. To do so consider the
matrix containing the joint probabilities and note the symmetry in this matrix.



We say that a sequence of random variables 77, ..., T, is exchangeable if for every real-
ization (t1,...,t,) and for every permutation 7 = (my,...,m,) of the integers (1,2,...,n),
we have equality of the following joint probabilities:

P(TI :tl,TQZtQ,...,Tn:tn) :P(T1 Itﬂ-l,TQItﬂ-z,...,Tn:twn). (2)

For instance, the probability of observing (0,1,1,0,1) in five trials, say, must equal the
probability of (0,0, 1, 1,1) and also the probability of (1,1, 0,0, 1), and so on. Exchangeability
places many constraints on the joint distribution, but it is in some ways a natural and quite
primitive assumption. It says that the probability you assign to the outcomes of a sequence
of trials does not depend on the order in which the trials occur.

Observe that if the joint probability happens to be a function of (¢y,...,t,) only through
s =y, t;, then the random variables must be exchangeable by the commutative property
of addition. Further observe that in Polya’s learning scheme, T},...,T, are exchangeable;
see equation (1). This is somewhat surprising considering the asymmetry of its construction.

Mixing Bernoulli Trials: There is a simple recipe for constructing exchangeable binary
sequences. Let Z be a random variable with range [0, 1], and let 71,75, ..., T, be condition-
ally independent and identically distributed given Z = z. (Draw the DAG!) Specifically, let
each one be a Bernoulli trial with success probability z. Marginally over Z, the sequence
Ti,...,T, is exchangeable. We proved this in class in the discrete case by noting
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where s = >, t;. Note where the conditional independence and identical conditional distri-
bution enter above. Being a function of the sum s, the random variables are exchangeable
by the observation above. We will say that the sequence T7,...,T,, so formed is a mixture
of conditionally iid Bernoulli trials.

An important example is when Z has a continuous distribution, specifically the Beta(a, b)
distribution. That is, the probability density of Z is

p(2) = 271 (1 — 2)P7!

and c is a normalizing constant ¢ = I'(a 4+ b)/[['(a)T'(b)]. It is an exercise to work out the
marginal distribution for 77, ...,7}, in this case.



De Finetti’s Theorem: The late Italian probabilist Bruno de Finetti championed the
subjective view of probability and established a deep connection between subjective assess-
ments and the orthodox view discussed above. Consider the indefinitely long sequence of
binary random variables T,T5,.... Think of their joint distribution as subjectively deter-
mining your uncertainty, such as in the Polya learning scheme. De Finetti proved that these
variables are exchangeable for each n if and only if they are a mixture of conditionally iid
Bernoulli trials. We already saw above that a mixture of conditionally iid Bernoulli trials is
exchangeable. The difficult and important result is that any exchangeable sequence must be
a mixture of conditionally iid Bernoulli trials. This result characterizes exchangeable binary
sequences. In other words, if you assess your uncertainty about a sequence of trials in such a
way that labeling of the trials is irrelevant, then you are equivalently asserting the existence
of a random variable Z such that given Z = z, the trials are iid Bernoulli(z). But the or-
thodox view is precisely that the trials are iid Bernoulli(#), where the unknown 6 represents
the long-run relative frequency of successes. The connection between the subjective view
and the orthodox view is complete if we simply add a probability distribution over #. That
is, if we treat the long-run relative frequency itself as a random variable (called Z, say). A
subjective assessment of a sequence of binary trials which takes the primitive exchangeability
assumption is equivalent to placing a prior distribution on the long-run success probability
within the orthodox view. Bayesian analysis rests on this formulation. That is, we accept
the orthodox view of iid trials, but we place probability distributions over the parameters of
the sampling distributions.

As an exercise, you should show that by taking a Beta(a,b) prior for #, the marginal
distribution of T, ...,T, is precisely the same as that of a Polya sequence, i.e. (1). So if
you consider learning about future tack tossings via the Polya learning scheme, it is as if
you characterize your uncertainty about the long-run success probability with a Beta(a,b)
distribution, and you view the subsequent tosses as conditionally iid Bernoulli trials.



