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1. INTRODUCTION

The contributions of Bruno de Finetti to the general philosophy of
probability theory, and to understanding of mathematical puzzles (finite
additivity) and pathologies (non-conglomerability) that can arise when
we try to apply it on infinite sets, have been well recognized and
appreciated, here and elsewhere. To show the other side of the coin,
we note some of the ways in which de Finetti's work has contributed to
the technical solution of real problems.

Probability distributions that are symmetric under permutations of
a finite number of variables arise constantly in applications. For example,
it is known that a bank has n depositors, with total deposits T. Our
joint probability distribution for the accounts will be a function
p(x] ...xn), where Xis the size of the i'th account, is presumably in
(0,7). Whatever other information we may possess about the distribution
of wealth, banking habits, etc. in the community, in the absence of any
information that could distinguish one depositor from another p(x1,...xn)
will be symmetric under permutations of the X

One might then think that any such distribution could be represented
in the integral form [Eq. (1) below] given by de Finetti, as generalized
by Hewitt and Savage (1955); however, this turns out not to be the case
because of the finiteness of n. The original de Finetti representation
theorem holds only for subsets of an infinitely long exchangeable sequence,
and not every finite symmetric sequence is such a subset. While one may
feel intuitively that the difference cannot be very serious, in principle
there is still unfinished business concerning the technical question of
applicability of the representation (1) in real problems, which always

involve finite sequences.



More generally, the variables X5 might be defined on almost any set X,
as Hewitt and Savage showed in far greater generality than we need. But the
phenomenon we wish to show arises a1ready for the binary set X = {1,0}
considered in the original theorem of de Finetti (Kyburg and Smokler, 1981).

What we demonstrate here for the binary set will hold, mutatis mutandis, for

any set X that is likely to arise in a real problem.

That there are difficulties with finite sequences was noted by Feller
(1971). He proved de Finetti's representation theorem by reducing it to
the Hausdorff moment problem, and then gave examples which "show that the
theorem fails for finite sequences". But he offered no alternative for
the finite case.

Heath and Sudderth (1976) gave such an alternative as part of a
completely different proof in which the representation (1) emerged as
the 1imit of a set of “Urn model"” distributions for finite sequences.
Their argument not only gives a much deeper understanding of the result;
it is so simple that it seems futile to look for a still simpler one.

But again, the integré] representation (1) was proved only for subsets
of an infinitely long sequence, and Heath and Sudderth also show by
example that it can fail for finite sequences.

Of course, merely exhibiting examples of failure does not prove
that (1) fails for all finite sequences; this question and also the
question whether, in cases where it fails, another equally convenient

integral representation may still hold, were left open by these arguments.



A closely related difficulty was discovered about twenty years ago in
physics. Here a joint probability distribution for the positions of n
particles, pn(x] ...xn), arises as the marginal distribution of a symmetric

distribution function P, for a larger number N > n of particles. Since

N
typically n was 2 or 3, while N was 1023, one sought to represent Py without
bringing in the details of the larger distribution PN. Some anomalous
results were obtained before it was realized that not every symmetric
n-particle function can be obtained by margina]izatibn from a symmetric
N-particle one.

The problem of finding the necessary and sufficient conditions on
an n-point distribution which guarantee that it has this parentage, is
called the N-representability problem in the literature of Statistical
Mechanics. That it is related to the theory of convex sets was realized
at once (Coleman, 1963), but to the best of the writer's knowledge an
explicit solution has not been given.

In the following we augment these discussions by showing that
(A) the original de Finetti representation (1) does indeed fail for a
wide class of finite sequences; (B) nevertheless, with a trivial
modification (dropping the non-negativity conQition) it is resurrected,

and the de Finetti representation then holds for all finite sequences,

leading to solution of the N-representability problem.

2. THE GENERATING FUNCTION

Following the terminology advocated by Jimmie Savage in 1960's,
a sequence {x],xz,...xN} whose probability distribution remains symmetric

as N>« is called exchangeable. The probability p(x]...xN) can then

depend only on the total number R of successes. The original theorem



asserts that, given any subset of n trials from an exchangeable sequence, the

probability that it contains exactly r successes can be written in the form

.
p(rin) = f (1] 2"0-2)™" g(2)dz (1)
0
where it is necessary that g(z) > 0 and that

1
j g(z)dz = 1 . (2)
0

Thus an exchangeable sequence is characterized completely by a single
generating function g(z).

Mathematically, (1) is a weighted average of binomial distributions,
and on that intuitive ground the representation (1) was introduced by
Laplace in 1774. He obtained many useful results--in particular the Rule
of Succession--by interpreting g(z) as the posterior density of a parameter
z, and therefore (1) as a predictive distribution for future observations.
But for over a century Laplace's method was in disrepute because of
conceptual difficulties [g(z)dz seemed to be a "probability of a probability"].

In 1937 de Finetti obtained the representation (1) by a compiete]y
different argument, which showed that Laplace's fault lay not in the
alleged metaphysics of his method, but only in his failure to establish
its essential assumptions and generajity. The results Laplace obtained
are now reinstated as important parts of Bayesian statistics (Lindley,
1976). Henceforth we shall call (1) the Laplace-de Finetti (LdF)
representation; its apparent failure for finite sequences remains as a

puzzle to resolve.



3. AN EXAMPLE

As soon as we know what to look for, it is easy to produce almost
trivial-looking examples of this failure and its relatijon to the
N-representability problem; it arises already in the comparison of two

and three tosses of a coin. A two-point symmetric probability distribution

p(x],xz) = p(xz,x]) on the set X = {0,1} 1is determined by three numbers:

p(11) = A
p(01) = p(10) = B
p(00) = C (3)

and the possible distributions are represented by all non-negative A, B, C

satisfying

A+ 2B+ C =1 . (4)

Thus any point on or within the triangle PQR of Fig. 1 represents a possible
- two-point symmetric probability distribution.
But now suppose our two-point function is to be derived from a

symmetric three-point one. For this we may write

p(111) = 3
p(011) = p(101) = p(110) = b
p(100) = p(010) = p(001) = ¢
p(000) =d . (5)

The possible three-point symmetric functions are given by all non-negative

(a,b,c,d) satisfying

a+3+3c+d-=1 ) (6)



But these distributions are related by marginalization:

A=a+b
B=b+c
C=c¢c+d

and now the normalization (6) imposes the constraint
1/3 < (A +C) <1 (7)

since (b+c) cannot exceed 1/3. Therefore for a two-point symmetric function
to be derivable from a symmetric three-point one, its representative point
must Tie on or within the quadrilateral PQST in Fig. 1. For it to be
derivable from a symmetric 4-point function, we find a further restriction
to a five-sided polygon inside PQST, etc. N-representability involves much
intricate detail.

What two-point functions are representable in the original LdF form?

This requires

A = I z2 g(z)dz
0
B = f] z(1-z) g(z)dz
0
_ ol 2
C = f (1-2)° g(z)dz . (8)
0
After a little algebra, we find that this implies
2 b 7
28+€) - (-07 -1 = 2] dy [ @2(y-2)7 oy) o(2) (9)
0 0

and so if g(z) > 0 we can generate only those two-point functions for which
(9) is non-negative. This Timits us to points on or above the tilted parabola
in Fig. 1. The two-point distributions representable in LdF form are therefore

limited to the parabolic slice PQU.



— ()

Figure 1.

- Exchangeable 2-point distributions derivable from N-point ones.

A=P(2 heads), C=P(2 tails). PQR=all possible distributions.
Derivability from a 3-point function truncates this to PQST.
4-point and 5-point parentage further truncate PQST as indicated

by the dashed and dotted lines. As N + « these nested polygons
tend to the parabola, representing independent Bernoulli trials.
The original Laplace-de Finetti representation yielded only
distributions on or above the parabola, where negative correlations
are impossible.



We can understand this restriction intuitively by noting that the right-

hand side of (9) is just four times the covariance of (x1,x The Timitation

2)'
to the parabolic slice therefore signifies that the LdF representation is
incapable of giving negative correlations. Yet in our opening example of
the bank depositors, knowledge of the total deposits T clearly does impose
a negative correlation in p(x]...xn). Thus the bank distribution has no
generalized LdF representation.

Of course, if we wish only to represent a symmetric distribution of
finite length, the Heath-Sudderth Urn representation is available. But
while their proof was very simple, their result (a probability mixture“of
hypergeometric distributions) is not. As an analytical tool, the integral

form (1) would be much easier to use. Also, a simpler Urn model may be

defined, in which we put in (1)
n

9(z) = L U, 6(2—;) (10)
k=0

(here the k'th Urn, containing a fraction k/n of red balls, is chosen with
probability Uk’ and n balls are drawn from it with replacement). However,
an argunent like (9) applies; if ngjO not every symmetric distribution
p(x]...xn) can be generated from (10).

As this example shows, the general N-representability problem is
nontrivial and threatens to become very complicated. Marginalization

from an N-point function to an n-point one involves a summation

p(x1...xn) = 2:p[x1...XN) (1)

over {Xn+]"'XN}' The resulting intricate details suggest that we are
using an awkward set of variables; for abstractly, marginalization is
nothing but a projection operation. A1l its properties would be retained,

and the problem should become easy, if we could find a "natural" coordinate
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system in which this marginalization reduces to an elementary geometrical
projection, parallel to the axes, of a point rather than a distributed mass.
The LdF representation comes close to accomplishing this. If we view
the marginalization (11) in the LdF representation, what is happening is
that the part §(z) of g(z) that affects only details of sequences Tonger
than n drops out from the expression for p(r|n). Therefore, g(z) must be
orthogonal to_the coefficients of g(z) in (1). These coefficients are
Bernstein polynomials of degree n; for r = (0,1,...,n) they form a complete
set for expansion of any polynomial of degree n. The projection property we

seek is therefore one of orthogonality to all polynomials of a given degree.

4. ORTHOGONAL EXPANSIONS
The polynomials that are orthogonal with respect to uniform weight
over a finite interval are not the Bernstein polynomials, but the Legendre
polynomials Pn(x) scaled to the interval:

(2n+1)"] s (12)

i

1
f Pn(Zz—T) Pm(22-1)dz
0

Since Pn(22—1) is itself a polynomial in z of degree n, P, (22-1) s orthogonal

to every polynomial of degree n < k:

1
f Pk(22~1) 2" dz = 0 , O<n <k . (13)
0
Therefore, if we expand the Laplace-de Finetti generating function in the

form

g(z) = z‘o:o (2k+1) a, P, (22-1) (14)
k=0 '
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where the factor (2k+1) is inserted to simplify later formulas, the LdF

representation reduces to a finite sum:

n
p(rin) = k§=:0 A,(ﬂﬁ) a, , 0<r<n (15)

(n)
rk

the transformation from Bernstein to Legendre polynomials:

where the coefficients A’ ’/, evaluated explicitly in the Appendix, represent

Now the crucial point is the observation that for r = (0,1,...,n) the
Bernstein polynomials, although not orthogonal, are linearly independent;

(n)

therefore the (n+1) x (n+t1) matrix A is nonsingular and (15) is uniquely

invertible:
a, = i: B(n) p(r|n) 0<k<n (17)
k kr i - - >

(n) (n)

where B/, the inverse matrix to A*'’, is also given explicitly in the
Appendix.

The expansion coefficients {aO,al,aZ,...} are therefore the "natural
coordinates"” that we sought. For any n, the probabilities fr = p(r|n},

),

are determined uniquely by the first (n+1) expansion coefficients {aO...an};

0<r<n defining an n-point symmetric probability distribution p(xI...x

n

but these coefficients are in turn determined uniquely by {fO...fn}. This

makes both the finiteness puzzle and the N-representability problem simple.
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5. FINITE SEQUENCES

Comparing (15) and (9), we see that the LdF representation was unable
to give all finite symmetric sequences because the allowable expansion
coefficients a, had been restricted by the non-negativity condition g(z)>0.
But this was in fact the only reason; for (14) and (17) constitute a proof
by construction that for any finite symmetric distribution p(x]...xn) we
can find a set of expansion coefficients, and therefore a generating function
g(z), for which the representation (1) will hold; with the only difference
that if there are negative correlations, then g(z) must be allowed to become
negative.

(2)

In our example of n=2, we find from the value of B given in the
Appendix that any point in the triangie PQR of Fig. 1 can now be reached

by the generating function

2

g(z) =1+3(A-C)(2z-1) + 5(A-4B+C)(6z" -62+1) (18)

but when the point (A,C) is outside a weird region bounded by two straight
Tines and the arc of an ellipse, g(z) becomes negative somewhere in (0,1).
With hindsight, it is easy to see heuristically how non-negativity
got into the original theorem. When n-e the binomial distribution in (1)
goes into a delta-function, (n+1)—] §(z-r/n); and so the probability that
the frequency (r/n) lies in (z<r/n<z+dz) tends to g(z)dz>0, in agreement
with Laplace's intuitive meaning of the generating function g(z).
At first glance, one would think that extending to n-+« should increase
the generality of the representation; but in view of (14), (17) it was
actually restricting its generality! The properties of Legendre polynomials

give us a new proof of the representation, in which this is obvious.
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However, the important new content of de Finetti's theorm did not concern
the length of the sequence, but rather the demonstration of something that
LapTace probably never suspected; namely that every exchangeable sequence
can be so represented.

Conclusion: we have only to drop the non-negativity condition, and
then every finite exchangeable sequence has a de Finetti integral representa-
tion. This gives us the means to solve many real problems, including
N-representability.

We find similarly that the simpler Urn model (10) can represent any

finite exchangeable sequence, if we allow some of the Uk to become negative.

6. N-REPRESENTABILITY

Given an exchangeablte N-point distributionfp(x]...x the n-point

Vs
distribution n<N, obtained from it by marginalization is the one whose
first {n+ 1) expansion coefficients {ao,a],...an}-are the same (but a =1
is the normalization condition always satisfied). Conversely, given an

n-point distribution, what is the condition that it be derivable from some

N-point one? We cannot just assign new expansion coefficients {an+1,...,aN}
arbitrarily, because in general this would not lead to non-negative
probabilities for the N-point distribution:
L)
p(RIN) =} A’ 320 - (0<R<N) (19)
k=0

So our expansion coefficients have been freed from one non-negativity

condition g(z) > 0 only to become entangled in a new one (19).
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But because of the invertibility (17), this new condition can be dealt
with at once. Think of the of the quantities {fR = p(RIN), 0<R<N} as
cartesian coordinates of a point in an (N+1)-dimensional space, restricted

by £fy = 1, f, > 0 to an N-dimensional convex set F, a generalization of the

R

familiar simplex triangle in three dimensions. The N+ 1 vertices of F (the
"points of the triangle") are determined by {fR:=1, fm=:0,ln# Ry O0<R<N}.

Therefore, in the inversion

y s e gk <N (20)

a p=—4
K™y "kRR =R

the point {ao...aN} is restricted to a convex set {polyhedron) SN whose

R'th vertex has coordinates

aty = {B(N> B(N)} 0<R<N . (21)

{ao... N'R or > <ot oBNRY < R <

From any point {ao...aN} of SN’ marginalization to a lower sequence of

Tength n consists simply of parallel projection, throwing away the coordinates

r

{a ...aN} and retaining {aO...a }.

n+1 n

The solution of the N-representability problem is therefore: the
necessary and sufficient condition that a symmetric n-point distribution
p(x]...xn) can be obtained by marginalization from a symmetric N-point
one is that its representative point {ao...an} must 1ie on the projection

of SN' This is a polyhedron Sn whose vertices are contained in the set

of projected vertices of S, (some of these may be interior points of Sn)‘

"
In our example of Fig. 1, for the 2-point distribution be derivable

from an N-point one, {a1,a } must lie on the (N+1)-sided polygon whose

2
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R'th vertex is

(M) _ 2R-N
a; = Byp" Ty
2 2
_ o(N) _ BRT-BNR+N° -N
%2~ Bar IGER) (22)

Four of these polygons are imaged in Fig. 1, which is an oblique projection of
the (a1,a2)~p]ane. N=2,3,4,5 gives the regions PQR, PQST, and the further
truncations of the dashed and dotted Tines. As N- theyapproach the parabola.

Likewise, for a symmetric 3-point distribution to be derivable from
some n-point one, it is necessary and sufficient that its expansion

coefficients 1ie on or in the polyhedron whose vertices are

1. [eln) o(n) (n)}
{a],az,a3f - {B]r BBV L (o<r<n) (23)
But as n—-=, we state without proof that B(n) goes asymptotically into
(n) 2r -1
SR S N R (22)

and (23) goes into a twisted smooth curve (the generalization of the parabola,

whose parametric egquations are

,

4a],a2,a3} = {P](x),Pz(x),P3(x)} , (-1 <x < 1) . (25)

{ - -

The possible 3-point distributions are then defined by the convex hull of
the curve (25); in this Timit we regain the result of the original LdF
representation.

For many applications we need to generalize these results, in the
nammey of Hewitt-Savage, to larger sets than the binary one X = {0,1}.

One can, of course, find new fTunctions which generalize the properties



16

of Legendre functions to higher dimensions. A more powerful and abstract
approach, which does not require us to go into all that detail, was discovered
by Dr. Eric Mjolsness while he was a student of the writer's. We hope that,
with its publication, the useful results of this representation will become

more readily obtainable.

7. CONCLUSION

With the clearing up of one small technical detail, de Finetti's famous
representation theorem is valid for all exchangeable sequences, finite or
infinite. This enables us to make a significant reduction in many real
problems; we note briefly how the appearance of kinetic theory is changed
by this result. |

A great deal of work has been done on what is called the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, a set of distribution functions
for the positions X; (in classical theory, also the momenta gi) of one
particle, two particles, --- on up to perhaps 1023 particies. The
n-particle distribution p = p(x]...xn;t) is not only symmetric and
derived by marginalization from all higher distributions; it depends
explicitly on the time t because of Schrodinger's (or Newton's) equations
of motion.

Now it turns out that almost all observable macroscopic properties
of a system--reversible or irreyersib]e in the sense of thermodynamics--could
be predicted if we could calculate how the two-particle function evolves
in time. But in this endeavor we have been frustrated for decades by the
fact that the recursion relations go the wrong way; i.e., the time evolution
of Py depends on p3, which is unknown. The evolution of Ps depends in turn
on Py which is even more unknown--and so on. In other words, the evolution

of Py depends on all the correlations in all the higher order distributions.
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The problem appears hopeless without making drastic simplifying assumptions
that nobody believes.,

But now, let us note the de Finetti representation. The distribution
function for any order n is determined by a single generating functional

g[f(x)], the Hewitt-Savage generalization of g(z):

p(xy--xy) = [ F00)F () ) ol (x)Taf (26)

n n

which is a functional integral over functions f(x), generalizing Eq. (1)

above. Furthermore, any physical prediction we wish to make can be

extracted directly from g{f(x)] by another functional integral Tike (26).
Therefore, we can reformulate kinetic theory in a way that sidesteps

the recursion problem by never introducing the hierarchy of distributions

at all. The object of our study becomes the generating functional g[f{x)],

which contains full information about all correlation effects of arbitrarily

high order. We seek the time evolution of g:

99 - g (27)

where K is an operator that we need not write down here, but that physicists
know how to find.

This idea is still new in physics and not well explored. But its
superior precision and simplicity make us predict that, fifty years from
now, kinetic theory will be based on the idea of the de Finetti functional,
and will be an incomparably more powerful tool for prediction than our

present one.
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APPENDIX
From (16), the transformation matrix A(n) is given by
1 -
A£E> = (2k+1) f (2) 2 (1-2)"" P (22-1)dz (A1)
0

The integral is a 3F2 hypergeometric function whose power series terminates,

giving the result

K

(n) _ m  nl(k+m)!'{(n-r+m)!
AN = (2k+1) _1) _ Y
rk j{: ( (n-r) 1 (k=m) ! (n+me1) ) (mt )2 (A2)

m=0

(n)

The columns of A are orthogonal vectors, but not normalized; one can show

by induction that

n
2
(n) f(n) _ _(2k+1)(n!)
}i:Ark Ars " (n-k)!(ntk+1)! Sps Ocr,sc<n (A3)
r=0
Therefore, the inverse of A(n) is
s(M) o (=KLt D)Ly (n) 0
kr (2k+1)(n1)? 7K ” ;
The first few of these matrices are:
] 1
|
\—1v ]
11
2 [ 0
1 -2 1
1 1 ] 1
-1 -1/3  1/3 1
s34 R
-1 3 -3 1 .
\ /
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