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Basic Symmetries

For infinite random sequences X = (Xj),
we have the following basic symmetries, listed
in order of strength, along with the associated
classes of transformations. (Thus, X has the
property on the left iff its distribution is invari-
ant under the transformations on the right.)

stationary
contractable
exchangeable
rotatable

shifts
contractions
permutations
rotations

In particular, X is contractable if all subsequences
have the same distribution and rotatable if the
joint distribution is invariant under any orthog-
onal transformation of finitely many elements.



Classical Results for
Infinite Sequences

For infinite sequences X = (Xj) of random
variables, we have the following basic charac-
terizations:

& de Finetti (1937): X is ezchangeable iff
it is mized (or conditionally) i.1.d.

& Ryll-Nardzewski (1957): X is contractable
iff it is exchangeable, hence mixed i.i.d.

& Freedman (1962): X is rotatable iff it is
mazed i.1.d. centered Gaussian



Symmetries on
Two-Dimensional Arrays

For random arrays of the form

we define

(X © (p7 Q))w = Xpi,qj, Z,] > 1.

Say that X is

e separately exchangeable if X o (p,q) <X
for all permutations p = (p;) and ¢ = (¢;),

e jointly exchangeable if X o (p,p) < X for
all permutation p = (p;).

The definitions of separate or joint contractabil-
ity or rotatability are similar. So are the defini-
tions for higher-dimensional arrays. Note that
separate exchangeability and contractability are
equivalent.



Natural Index Sets

An array X = (X;;) on N? is jointly ex-
changeable iff the same property holds for the
array

Yij = (Xij, Xua), 07
It is then enough to consider arrays indexed by
the non-diagonal part of N?. In general, we
may consider exchangeable arrays on the class
N of finite sequences of distinct numbers in N.

Similarly, an array X = (Xj;) on N is jointly
contractable iff the same property holds for the
array

Zi; = (Xij, Xji, Xii), <.

It is then enough to consider arrays indexed by
the sub-diagonal part of N?, which may be iden-
tified with the set of unordered pairs {i,j}. In
general, we may consider contractable arrays on
the class N of finite subsets of N.



Functional Form of
de Finetti’s Theorem

& An infinite sequence X = (X,,) of r.v.’s is
exchangeable iff a.s.

Xn:f(Oé,fn), nZ 17

for a measurable function f on [0,1]* and some
i.i.d. U(0,1) rv.’s a and &1,&, . . ..

Here the X,, are conditionally i.i.d. given .
The function f is not unique, and the construc-
tion of o and &1, &, . . . may require an extension
of the basic probability space.



Representation of
Exchangeable Arrays
& Aldous (1981), Hoover (1979): An array
X = (Xj;) is separately exchangeable iff

a.s.
Xij - f(aagianﬁcij): Z:] > 17

for a measurable function f on [0,1]* and
some i.3.d. U(0,1) r.v.’s a, &, nj, Gij-
& Hoover (1979): An array X = (Xjj; i # )
15 jointly exchangeable iff a.s.
Xij:f(a/afbgjv@j)? Z%]a
for a measurable function f: [0,1]* — R
and some i.4.d. U(0,1) r.v.’s o, &, (j =



Representation and Extension of
Contractable Arrays

& K(1992): An array X = (X551 < j) is
jointly contractable iff a.s.

ij:f(&7517€]7CZJ)7 Z<]7

for a measurable function f on [0,1]* and
some i.i.d. U(0,1) r.v.’s o, &, Gj, 1 < J.

Comparing with the jointly exchangeable case
gives:

& An sub-diagonal array is jointly contractable
ioff it can be extended to a jointly exchange-
able array on the non-diagonal index set.

No direct proof is known.



Higher-Dimensional Arrays
For k = (ki,...,ky), let k = {k1,... ky}.

& Hoover (1979): An array X on N is jointly
exchangeable iff a.s.

Xp=flép I Ck), keN,

for a measurable function f on Un[()N,I]Qn
and some i.1.d. U(0,1) r.v.’s &, [ € N.

& K(1992): An array X on N is jointly con-
tractable iff a.s.

X;=[f(&s1clJ), JeN,

for a measurable function f on Un[Ow,l]Qn
and some i.i.d. U(0,1) r.v.’s &, 1 € N.

& An array on N is jointly contractable iff it
can be extended to an jointly exchangeable
array on N.



Rotatable Arrays

& Freedman (1962): A sequence X = (X;)
1s rotatable iff a.s.

Xi:O—CiJ 121

for some i.i.d. N(0,1) r.v.’s ¢; and an in-

dependent r.v. o.
& Aldous (1981): An array X = (X;) is sep-
arately rotatable iff a.s.
Xij = 0Gj+ > 0 &My, 4,5 > 1,

for some i.i.d. N(0,1) r.v.’s &, Mk, Gj
and an independent set of r.v.’s o and oy,
satisfying Y o < 00.

& K(1988): An array X = (X;;) is jointly ro-
tatable iff a.s.
Xij = pbij + 0Gij + 0'Gi
+ Zh,kahk (&u fk;j — 5@'5%), i,j > 1,

for some i.i.d. N(0,1) r.v.’s &, ¢ and
an independent set of r.v.’s p, o, o', ap
satisfying Sk iy < 00.
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Hilbert-Space Setting

By a continuous, linear, random functional
(CLRF) on a (separable, infinite-dimensional,
real) Hilbert space H we mean a random pro-
cess X on H such that

e h, — 0in H implies Xh,, £ 0,

o X(ah+bk)=aXh+bXk a.s.
for all h,k € H, a,b € R.

An isonormal Gaussian process (G-process) on
H is defined as a centered Gaussian process X
on H such that

Cov(Xh, Xk) = (h, k), h,ke H.

A unitary operator on H is a linear isometry U
of H onto itself. Say that a CLRF X is rotatable
if XoU £ X for all unitary operators U, where
(X oU)h = X(Uh).

& Freedman (1962-63): A CLRF X on H
s rotatable iff X = on a.s. for some G-
process n and an independent r.v. o > 0.
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Multi-Variate Rotations

To understand tensor products, we may as-
sume that Hy = L*(juy) for all k. Then

(M1 ® - @ hy)(s1,. -y 80) = ha(s1) -+ - ha(sn).

For any unitary operators U, on Hp, k < n,
there exists a unique unitary operator ®; U, =
U®---®@U,on®,H,=H ®---® H, such
that

Write H*" = H®---QH and U*" = U®- - -QU.

A CLRF X on H®" is said to be

e separately rotatable if X o @ Uy < X for
all unitary operators Uy,...,U, on H,

e jointly rotatable if X o U®" £ X for all
unitary operators U on H.
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Multiple Wiener—It6 Integrals

The basic examples of separately or jointly
rotatable CLRF’s are the multiple Wi-integrals,
defined as follows:

& For any independent G-processes np on
Hy, kE < n, there exists an a.s. unique CLRF
Qi M on i Hy. such that, a.s. for any hy, € Hy,

& For any G-processn on H and anyn € N,
there exists an a.s. unique CLRF n®" on H®"
such that, a.s. for orthogonal hq,..., h, € H,

" (h1 @ -+ ® hyp) = nhy - nhy,.

Clearly ®;. ny is separately rotatable and n®"
is jointly rotatable. Similarly, we may define
CLRF’s on ®; H;"™* of the form ®; n;"™.
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Separately Rotatable
Random Functionals

Let P, be the set of partitions of {1,...,d}.

& K(1995) A CLRF X on H®? is sepa-
rately rotatable iff a.s.

Xf=Y (Q@u)la=®f), feH

mePy Jerm

for some independent G-processes ny on H ®
H®T J € 29\ {0}, and an independent set of
random elements o, € H®™, m € Py.

This is equivalent to the basis representation

Xk: Z Z QZT anJJ,l]7 kEINId7

wePy leNT Jemw

where

Xiyoky = X(hi, @ -+ @ hy,)

for some ONB hq, ho,... € H. Any separately
rotatable array can be represented in this form.
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Jointly Rotatable
Random Functionals

Let Oy be the class of partitions of {1,...,d}
into ordered sets k = (ki, ..., k) of size |[k| =r.

& K(1995) A CLRF X on H? is jointly
rotatable iff a.s.

Xf=>Y (@)= f), feH™

ey kem

for some independent G-processes ny on H‘g’(kﬂ),

k < d, and an independent set of elements o €
H®7T, m e Oy.

This may again be restated in basis form, us-
ing the representation of multiple Wl-integrals
in terms of Hermite polynomials. However, the
general representation of jointly rotatable ar-
rays is more complicated, since it also involves
diagonal terms of different order.
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Separately Exchangeable
Random Sheets

A random sheet on Ri is a continuous pro-
cess X = (Xy) such that X; = 0 when min; ¢; =
0. Exchangeability and contractability are de-
fined in terms of the increments.

Let 75d = Uy Ps, where P; is the class of
partitions of J € 27\ {@}. For m € P, write
¢ = J°.

& K(1995) A random sheet X on RZ is
separately exchangeable iff a.s.

Xi= Y (AN @ Qn)(a-®[0,1]), teRY,

7r€73d Jem

for some independent G-processes ny on H ®
L*(\) and an independent set of random ele-
ments o, € H®T.

A similar representation holds for separately
exchangeable random sheets on [0, 1]%.
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Jointly Exchangeable and
Contractable Random Sheets

For any 7 € 75d, put (’57T = Uyjer Oy, and de-
fine the vectors ¢, by t}’,] = minjest;, J € 7.

& K(1995) A random sheet X on R is
jointly exchangeable iff, a.s. for all t € R‘fr,

X = Z Z (/\77” ® ® 77|k|)(047r,n %Y [07 fﬁ]))

T€Pd ke, kek

for some independent G-processes n,, on H ®
L*(\™), m < d, and an independent set of ran-
dom elements o, € H®", k € Oy, ™ € Py.

A similar but more complicated representa-
tion holds for jointly contractable sheets on Ri.
The problem of characterizing jointly exchange-
able sheets on [0, 1]? remains open.
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1930-37
1958
1958
1951
1957
1960
1961
196263
1969
1970-73
1972-78
1975
1976
1978
1979
1981
1981
1982
1986
1988-95
1992—
1996

de Finett:

de Finett
Schoenberg

Ito
Ryll-Nardzewsk:
Biihlmann
Gaifman
Freedman

Krauss
Olson/Uppuluri
Dawid
McGinley/Sibson
Silverman
Fagleson/Weber
Hoover

Aldous
Diaconis/Freedman
Dovbysh/Sudakov
Hestir

Kallenberg
Tvanoff/Weber
Olshanski/Vershik
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exchangeable sequences

partial exchangeability
completely monotone functions
multiple Wiener integrals
contractable sequences
exchangeable processes
exchangeable arrays in logic
rotatable sequences/processes
exchangeable arrays in logic
rotatable matrices
exchangeable/rotatable arrays
exchangeable arrays
exchangeable arrays
exchangeable arrays
exchangeable arrays
exchangeable/rotatable arrays
arrays in visual perception
exchangeable arrays
exchangeable arrays and sheets
arrays, sheets, measures, functionals
exchangeable arrays

rotatable arrays



