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I
After Logical Empiricism

Call it what you will—and it was mainly its enemies who called it ‘logical
positivism’—logical empiricism was less a position than a movement, a loose con-
federation of activists in Vienna, Berlin, Prague, Warsaw, Uppsala, London, . . .,
and even Cambridge (Massachusetts). The shape of the movement was signifi-
cantly influenced by historical contingencies like the execution of Janina Hosiasson-
Lindenbaum (1899-1942) by the Gestapo in Vilna, silencing one of probabilism’s
clearest early voices.1

Still, the movement did originate with certain salient features, persistent and
position-like, but fluid. Notable among these was the logicism that promised
to made sense of the non-empirical character of mathematics by rooting it in
logic. Another was the empiricism that defined the remainder of the realm of the
meaningful. But both of these went through serious changes of shape and fortune
in response to hardcore metamathematical developments (notably, the limitative
theorems of Gödel and Tarski, Turing and Church) or in response to other, no less
effective, dialectical moves—especially, Carnap’s, in tandem with Neurath, from
the phenomenalism of Der logische Aufbau der Welt (1928) to the physicalism of
Der logische Syntax der Sprache (1933).

What happened to logical empiricism?

I think that both its logicism and its empiricism ran their course, but were
far from vanishing without a trace. On the contrary, I think they can be seen to
have been transformed, within the movement, into what are now well-established
successor disciplines. It is the empiricism that mainly interests me here, but let us
begin with a look at an unestablished successor to the logicism that intrigues me.

1Some of her writings: ‘Why do we prefer probabilities relative to many data?’, Mind 40
(1931) 23-36. ‘On confirmation’, Journal of Symbolic Logic (1940) 133-148. ‘Induction et analogie:
comparaison de leur fondement’, Mind (1941) 351-365.
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1.1 Logicism Lite2

Here is the core of logicism as I see it, presented as a metaphysical question and
its dissolution.

Q: How do the natural numbers latch onto the world?

A: They don’t—e.g., when we explicate ‘There are exactly 3 dodos’ we speak
of dodos, but of not numbers:

There exist distinct dodos, x, y, z, and no others,

or, in logical notation,

∃x ∃y ∃z[Dx ∧ Dy ∧ Dz ∧ x �= y ∧ x �= z ∧ y �= z
∧ ¬∃w(Dw ∧ w �= x ∧ w �= y ∧ w �= z)].

For short:

∃3̄xDx,

where ‘3̄’ is to be replaced by the numeral for 3 in your favorite notation—e.g.,
perhaps, 3̄ = the successor of the successor of the successor of 0,

∃0′′′xDx.

Aside from the biological term ‘D’, only logical terms appear here.

Logicism Lite says: It’s the DATA that are logical.

Carnap’s full-blown (1931) logicist thesis about what he called simply ‘mathe-
matics’ was a heavy logicism, according to which
• mathematical concepts are explicitly definable in logical terms, and
• mathematical theorems are then seen to be logical truths.
Our lighter logicism counts number-theoretical laws as logical for the same reason
that physical laws were once counted as empirical: because of the character
of their instances.3

Example. Logicism lite does not count Fermat’s Last Theorem as shorthand for
a logically valid formula, but as a generalization that derives its status as logical
from the particular data it is responsible to—data like

2The ideas in this section were floated in ‘Logicism 2000: A Mini-Manifesto’ in Benacerraf and
his Critics, Adam Morton and Stephen P. Stich, eds.: Blackwell, Oxford, 1996, pp. 160-164. For
a more serious, independent development of such ideas, see Fernando Ferreira, ‘A Substitutional
Framework for Arithmetical Validity’, Grazer Philosophische Studien 56 (1998-9) 133-149.

3It is no longer respectable (and rightly so!) to think that Newton’s inverse square law of
gravitation is logically equivalent to the set of its observational consequences. But Fermat’s last
theorem is logically equivalent to the set of its variable-free consequences.
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33 + 43 �= 53 ,

which are established by invalidity of schemas like

∃3̄3̄+̄43̄xA(x) ↔ ∃5̄3̄xA(x)

via recursive contextual definitions of +, ×, etc. in the subscripts of numerically
definite quantifiers. Now any decision procedure for monadic 1st-order logic with
‘=’ delivers the data about particular sums, products, and powers to which Fer-
mat’s last theorem is answerable.4

1.2 Thespian Fictionalism

As to the other salient metaphysical question about number theory, ‘What are
the natural numbers?’, the answer is: Any ω-sequence will do. The simplest
choice is the sequence of numerals that you use, whether that is ‘0’, ‘0′’, ‘0′′’, . . . or
‘0’, ‘1’, ‘2’, . . ., or whatever. Your numerals are an ontological freebie: they are there
anyway, in the syntax of your number theory. For natural number theory itself, as
for the theory of real numbers, there is no “correct” domain for its variables.

What I am suggesting is not particularly that number theory is a fiction, but
that it is a play, which can be performed with different casts. It’s still “Henry the
Fifth,” whether it’s the Laurence Olivier or the Kenneth Branagh production. And
it’s still “Number Theory,” whether the rôles of 0, 1, 2 . . . are played by ‘0’, ‘1’,
‘2’, . . . or by ‘0’, ‘0′’, ‘0′′’, . . . or by ∅, {∅}, {{∅}}, . . ..

4Fernando Ferreira’s (op. cit.) light logicism has no need of these recursive definitions. His
concern is with the language La of first-order arithmetic without function symbols, with ‘=’
and �=, and with the six further predicate symbols Suc, Add, Mul, Suc, Add, Mul under the
interpretations Suc(x, y) iff x′ = y, Add(x, y, z) iff x + y = z, . . . , Mul(x, y, x) iff x × y �= z.
Where I reduce truth of ‘7 + 5 = 12’ to validity of ‘∃7̄+5̄xA(x) ↔ ∃12xA(x)’, which is then
reduced, in stages, to validity of ‘∃12xA(x) ↔ ∃12xA(x)’, he reduces truth of ‘Sum(7, 5, 12)’ or
of ‘¬Sum(7, 5, 12)’ to validity of ‘∃7xA(x)∧∃5xB(x)∧¬∃x(A(x)∧B(x))→ ±∃12x(A(x)∨B(x))’,
where in the reduct of ‘Sum(7, 5, 12)’ the sign ‘±’ is dropped, and in the reduct of ‘¬Sum(7, 5, 12)’
it is replaced by ‘¬’, which is then eliminated step-by-step. (The negation, ‘¬’, of a formula A is
defined by interchanging = and �=, ∧ and ∨, ∀ and ∃, Suc and Suc, Add and Add, and Mul and
Mul. Then ¬¬A = A.) Using Saul Kripke’s treatment of substitutional quantification (‘Is there
a problem about substitutional quantification?’, Truth and Meaning, G. Evans and J. McDowell,
eds., Oxford, Clarendon Press, 1980, pp. 325-419), Ferreira defines, relative to any given first-
order language L and any sentence S of La, a scheme S of substitutional sentence forms over L,
and proves the following: (a) If S is a true sentence of La, then every member of S is true. (b)
If S is a false sentence of La, then not every member of S is valid.

3



Now, what about the real numbers? Here I take logicism’s successor discipline
to be the theory of measurement, the topic treated in volume 3 of Principia Math-
ematica and developed (independently of that) into an applied mathematical dis-
cipline later in the 20th century.5

Volume 3 of Principia aimed to lay foundations for the conceptual apparatus
of physics, in a theory of measurement (part VI, ‘Quantity’). Like the natural
numbers, the rationals were “defined away”, as when 2/5 was defined as a relation
between relations.6 And physical magnitudes were analyzed as relations:

We consider each kind of quantity as what may be called a vector-
family, i.e., a class of one-one relations all having the same converse
domain, and all having their domain contained in their converse do-
main. In such a case as spatial distances, the applicability of this view
is obvious; in such a case as masses, the view becomes applicable by
considering, e.g., one gramme as . . . the relation of a mass m to a mass
m′ when m exceeds m′ by one gramme. What is commonly called sim-
ply one gramme will then be the mass which has the relation + one
gramme to the zero of mass.7

The basic move in measurement theory is to axiomatize the theory of the com-
parative versions of real magnitudes like mass (where the primitive term of the
comparative version the relation is at least as massive as) so as to mirror the
properties of the relation ≥ between reals. What I am suggesting is that different
empirical magnitudes (mass, length, temperature, desirability, etc.) correspond to
different productions of a play, “Reals!”, for which the axiomatic script is the theory
of complete ordered fields. The suggestion is that abstract productions—models
within pure set theory—are at best first among equals.

Example: Bolker’s Representation theorem for the relation � of weak pref-
erence between possible states of affairs (propositions).8 Here, A and B are any
members of the field F of the relation �, and ‘X � Y � Z’ means that X � Y
and Y � Z.

Axiom 1. F (= A−⊥) is a complete,9 atomless Boolean algebra A with the

5See Foundations of Measurement, David H. Krantz, R. Duncan Luce, Patrick Suppes and
Amos Tversky (eds.): New York, Academic Press: volumes 1-3 (1971, 1989, 1990).

6Quine’s example: the relation 2/5 holds between the grandparent relation and the great-
great-great grandparent relation. (‘Whitehead and Modern Logic’, The Philosophy of Alfred
North Whitehead, P. A. Schilpp (ed.), Northwestern University Press, 1941, p. 161.)

7Principia Mathematica, vol. 3, p. 233.
8Ethan Bolker, ‘A Simultaneous Axiomatization of Utility and Subjective Probability’, Phi-

losophy of Science 34 (1967) 333-340. Also, chapter 9 of The Logic of Decision (2nd ed., 1983).
9A Boolean algebra is complete iff every set of elements of the algebra has a supremum and

an infimum in the algebra. The supremum of a set of propositions is implied by every element
of the set (it is an upper bound) and implies every upper bound (it is the least upper bound).
Similarly, the infimum is the greatest lower bound.
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null element removed.

Axiom 2. Weak preference is transitive and connected.
Definitions. Preference: A � B iff A � B �� A.

Indifference: A ≈ B iff A � B � A.

Axiom 3, “Averaging.” If A and B are incompatible,10 then
(a) A � A ∨B � B if A � B, and (b) A ≈ A ∨B ≈ B if A ≈ B.

Axiom 4, “Impartiality.”11 If (a) A,B,C are incompatible
and (b) A ≈ B �≈ C and (c) A ∨ C ≈ B ∨ C, then
(d) A ∨ C ′ ≈ B ∨ C ′ whenever C ′ is incompatible with A and B.

Axiom 5, “Continuity.” If the supremum, S (or infimum, I) of an implica-
tion chain12 in F lies in a preference interval, then all members of the chain after
(or before) some element C will lie in that interval.

Bolker’s existence theorem. If � satisfies axioms 1-5, then there exist a
probability measure pr and a signed measure13 sg onA with the following property:

(Θ) A � B iff des(A) ≥ des(B), where des(X) =df
sg(X)
pr(X)

.

This takes some proving.14

The actors in Bolker’s production are indifference classes, where your
indifference classe for A is the set ϕ(A) to which a proposition belongs if and only
if you are indifferent between it and A. If we write ‘≥’ between ‘ϕ(A)’ and ‘ϕ(B)’
to indicate that A � B, we get a simulacrum of (Θ) that takes no proving:

(Θ′) A � B iff ϕ(A) ≥ ϕ(B).

What does take proving is that ϕ, whose values are certain subsets of F , acts in
all relevant respects15 like des, whose values are certain real numbers. Or, since
real numbers are only rôles, what takes proving is that the values of ϕ do play the
rôle of real numbers: That, rewritten according to (Θ′), the script given by axioms
1-5 can be seen to have the usual axioms for the reals as a subplot, so that the

10I.e., if A ∧B = ⊥, where ⊥ is the null element of A.
11When conditions (a) and (b) hold, C is a “test proposition” for equiprobability of A and B;

and the test is passed or failed depending on whether or not (c) holds. This axiom says that the
test is impartial in the sense of not depending on which particular test proposition C is chosen.

12I.e., a set of propositions linearly ordered by the relation A implies B (A = A ∧B).
13As signed measures need only be countably additive, sg may take values less than 0 and

greater than 1.
14As in Bolker’s doctoral dissertation, Functions Resembling Quotients of Measures, (Harvard

University, April 1965), where the representation theorem is proved in chapter 9 (which is largely
reproduced in the 1967 ‘simultaneous axiomatization’ paper) as a corollary of earlier parts of
the dissertation. These appear, somewhat condensed, as ‘Functions Resembling Quotients of
Measures’, Transactions of the American Mathematical Society 124 (1966) 292-312.

15—in spite of having to satisfy further conditions as well, e.g., averaging and impartiality.
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trajectory of ϕ(X) through the indifference classes will simulate the trajectory of
des(X) through any other production of “Reals!”.

A final question: How can coarse-grained magnitudes (temperature, desirability)
provide casts large enough to fill the enormous stage needed for the real numbers
play? (Pure set theory suffers no such embarrassment.) Here is an answer, ad-
dressed to the case of your des function.

The crucial question is: Can your actual weak preference relation � be extended
to a relation �′ that satisfies all of Bolker’s axioms? If not, your preferences are
incoherent, and the fault is with your script, not with the production company. But
if it can, then there are relations �′ that satisfy the Bolker axioms and agree with
� wherever the latter is defined. According to Bolker’s representation theorem,
each such completion of your weak preference relation determines a function ϕ
whose values can provide a full cast for “Reals!” .

1.3 Empiricism Lite?

Here is a sample of mid-20th century heavy empiricism:

Subtract, in what we say that we see, or hear, or otherwise learn from
direct experience, all that conceivably could be mistaken; the remainder
is the given content of the experience inducing this belief. If there were
no such hard kernel in experience—e.g., what we see when we think
we see a deer but there is no deer—then the word ‘experience’ would
have nothing to refer to.16

Heavy empiricism puts some such “hard kernel” to work as the “purely experiential
component” of your observations, about which you canot be mistaken. Lewis him-
self thinks of this hard kernel as a proposition, since it has a truth value (i.e., true),
and has a subjective probability for you (i.e., 1). Early and late, he argues that the
relationship between your irrefutable kernel and your other empirical judgments is
the relationship between fully believed premises and uncertain conclusions, which
have various probabilities conditionally upon those premises. Thus, in 1929 (Mind
and the World Order, pp. 328-9) he holds that

the immediate premises are, very likely, themselves only probable,
and perhaps in turn based upon premises only probable. Unless
this backward-leading chain comes to rest finally in certainty, no
probability-judgment can be valid at all. . . . Such ultimate premises

16C. I. Lewis, An Analysis of Knowledge and Valuation, Open Court, LaSalle, Illinois, 1947,
pp. 182-3. Lewis’s emphasis.
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. . . must be actual given data for the individual who makes the judg-
ment.

And in 1947 (An Analysis of Knowledge and Valuation, p. 186):

If anything is to be probable, then something must be certain. The
data which themselves support a genine probability, must themselves
be certainties. We do have such absolute certainties in the sense data
initiating belief and in those passages of experience which later may
confirm it.

In effect, Lewis subscribes to Carnap’s view17 of inductive probability as pre-
scribing, as your current subjective probability for a hypothesis H, its “degree of
confirmation”, prt(H) = c(H|D1∧D2 . . .∧Dt), given all of your fully believed data
sentences Di, from the beginning (D1) to date (Dt).

Lewis’s arguments for this view seem to be based on the widespread but erro-
neous idea that

(a) such conditioning on certainties is the only rational way to form your degrees
of belief, and

(b) if you are rational, the information encoded in your probabilies at any time is
the conjunction of all your data propositions up to that time.

Against (a), I point to the existence of a way, prescribed under identifiable
circumstances by the rules of the probability calculus, in which you must update
your old probabilities in the light of experience which has led you to assign certain
new probabilities short of 1 to the answers to a multiple-choice question on which
your new observation bears—say, new probabilities r, y, g for the color (R, Y,G) of
a traffic light:

new(H) = r · old(H|R) + y · old(H|Y ) + g · old(H|G)

(“Probability Kinematics”)

If you were sure of the color—say, red—your new probabilities would be r =
1, y = 0, g = 0, and the formula would reduce to ordinary conditioning: new(H) =
old(H|R).

The broadest general sufficient condition mandated by the probability calculus
for this mode of updating is constancy of your conditional probabilities given the

17See, e.g., Rudolf Carnap, The Logical Foundations of Probability, University of Chicago Press
(1950, 1964).
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possible answers (A = R, Y,G) to the question, as your probabilities for the answers
change (i.e., here, to r, y, g):18

new(H|A) = old(H|A) for A = R, Y,G (“Invariance”)

Against (b), I point to cases where experience conveys information that you
cannot incorporate into your judgmental probabilities simply by conditioning on
some proposition in your probability space.

Example. Is the shirt blue or green? There are conditions (blue/green color-
blindness, poor lighting) under which what you see can lead you to adopt
probabilities—say, 2

3
, 1

3
—for blue and green, where there is no hardcore experiential

proposition E you can cite for which your old(Blue|E) = 2
3

and old(Green|E) = 1
3
.

This E would be less accessible than Lewis’s ‘what we see when we think we see
a deer but there is no deer’, since what we think is not that the shirt is blue, but
that new(blue) = 2

3
, new(green) = 1

3
.

With E as the proposition new(blue) = 2
3 ∧ new(green) = 1

3 , it is actually possible

to expand the domain of the function old so as to allow conditioning on E , in a
way that yields the same result you would get via probability kinematics. Formally,
this E behaves like the elusive E of the preceding paragraph.19 Perhaps E could be
regarded as an experiential proposition in some very light sense. It may be thought
to satisfy the certainty and invariance conditions, new(E) = 1 and new(H|E) =
old(H|E), and it does stand outside the normal run of propositions to which we
assign probabilities, as do the presumed experiential propositions with which we
might hope to cash those heavily context-dependent epistemological checks that
begin with ‘looks’. Perhaps. But my own inclination is to withhold the term ‘em-
piricism’ in this very light sense as misleadingly atavistic, and speak simply of
“probabilism”.

18Proof. In the presence of invariance, the following instance of the law of total proba-
bility reduces to probability kinematics: new(H) = new(H|R)new(R) + new(H|Y )new(Y ) +
new(H|G)new(G).

19Following Brian Skyrms, Causal Necessity (Yale, 1980), Appendix 2, note that, where E =
new(D1) = d1 ∧ . . . ∧ new(Dn) = dn , if (1) old(Di| Di = di )= di and (2) old(H|Di∧E) = old(H|Di),

then (3) old(H| E)= d1old(H|D1) + . . . + dnold(H|Dn). In the presence of certainty, new(E)=1,
invariance, new(H|E) = old(H|E), reduces to new(H) = old(H|E), and—as with probability
kinematics—we have (4) new(H) = d1old(H|D1 + . . . dnold(H|Dn).
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1.4 Appendix: Notes on Heavy Empiricism

1.4.1 Mach’s Moustache

. . . I lie upon my sofa. If I close my right eye, the picture represented in
the accompanying cut is presented to my left eye. In a frame formed by
the ridge of my eyebrow, by my nose, and by my moustache, appears
a part of my body, so far as visible, with its environment. My body
differs from other human bodies—beyond the fact that every intense
motor idea is immediately expressed by a movement of it, and that, if
it is touched, more striking changes are determined than if other bodies
are touched—by the circumstance that it is only seen piecemeal, and,
especially, is seen without a head. . . .20

As illustrated, Mach’s moustache frames a photographic parable of the eviden-
tial proposition E for an intert fragment of visual perception.

20Ernst Mach, The Analysis of Sensations and the relation of the Physical to the Psychical,
Chicago, Open Court, 1897; New York, Dover, 1959, pp. 18-19.
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1.4.2 Quine’s Irritations of our Sensory Surfaces

—say, the retina. The trouble is that a chronological record of the pattern of
irritation of rods and cones would be gibberish without a correlated record of
activity in the proprioceptive circuitry monitoring position of eyes in head, head
on torso, etc. Here is his broader (and, I think, latest) word on the subject:21

. . . we can imitate the phenomenalistic groundwork of Carnap’s Aud-
bau in our new setting. His ground elements were his elementary expe-
riences; each was the subject’s total sensory experience durimng some
moment, or specious present. What can we take as the physical ana-
logue? Simply the class of all sensory receptors that were triggered at
that moment; or, better, the temporally ordered class of receptors trig-
gered during that specious present. The input gets processed in the
brain, but what distinguishes one unvarnished input from another is is
just what receptors were triggered and in what order. Here is a fitting
physical correlate of the global sensory experience of a moment. I call
it a global stimulus.

1.4.3 Inner-outer hocus-pocus

Use of the familiar inside/outside the skin contrast as an explanatory placebo is
bogus because the whole body is part of the “external” world. Consider Quine’s
global stimulus: ‘The input gets processed in the brain, but what distinguishes
one unvarnished input from another is is just what receptors were triggered and in
what order.’ The “unvarnished inputs” are triggerings of “receptors”—but these
must include triggerings of introceptors, inputs that register orientations of eyes
in head, head on shoulders, etc. And do these latter include inputs to the muscles
governing these orientations, which are part of a feedback loop containing those
introceptors? Quine’s breezy analogy overlooks these questions.

1.4.4 Conscious experience is too slender a base.22

“Blindsight”23 is a striking illustration. In certain primates—humans, among
them—some 90% of optic nerve fibres project to the striate cortex at the very
back of brain via the dorsal lateral geniculate nucleus in the midbrain. The non-
geniculo-striate 10% seem to provide visual capacities of which patients whose

21Willard van Orman Quine, From Stimulus to Science, Harvard University Press, 1995, pp.
16-17.

22See pp. 3-5 of Probability and the Art of Judgment (Cambridge, 1992).
23Blindsight, a Case Study and Implications, L. Weiskrantz (Oxford, 1986), pp. 3-6, 14, 168-9.
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striate cortex is removed are unaware. One such patient (“D.B.”), who ‘could not
see one’s outstretched hand, . . . seemed to be able to reach for it accurately.’ In ef-
fect, D.B. formed rather reliable judgments about the location of the unseen hand.
(He thought of it as guesswork.) The rest of us—epistemologists and others—who
may well make some use of the the occult 10%, are similarly oblivious to its input.

1.4.5 Neurath’s Protocol-Processor24

There is no way to establish fully secured, neat protocol sentences as
starting point of the sciences. There is no tabula rasa. We are like
sailors who have to rebuild their ship on the open sea, without ever
being able to dismantle it in dry-dock and reconstruct it from the best
components. . . . (p. 92)

. . . Fundamentally it makes no difference at all whether Kalon works
with Kalon’s or with Neurath’s protocols . . .. In order to make this quite
clear, we could think of a scientific cleaning machine into which pro-
tocol sentences are thrown. The ‘laws’ and other ‘factual statements’,
including protocol statements, which have their effect through the ar-
rangement of the wheels of the machine, clean the stock of protocol
statements thrown in and make a bell ring when a ‘contradiction’ ap-
pears. Now either the protocol statement has to be replaced by another
or the machine has to be rconstructed. Who reconstructs the machine,
whose protocol statements are thrown in, is of no consequence at all;
everybody can test his ‘own’ as well as ‘others” protocol statements.
(p. 98)

1.4.6 Probabilistic Enhancement of Dogmatic Protocols25

Driving to work, radios tuned to NPR, Ann and three of her colleagues all hear an
actor—they know it’s Gielgud or Olivier—doing ‘To be or not to be’. On arrival
they write protocol sentences on cards (e.g., ‘Ann’s protocol at 9 AM: At 8:45
AM I heard Gielgud’) and drop them into the protocol box. The Protokollmeister
collects the four cards and prepares a single protocol for the Neurath machine (e.g.,
‘Master protocol at 9:05 AM: It was Gielguid’), like this:

The master protocol says it was Gielgud if at least three of the indi-
vidual protocols said it was Gielgud, and otherwise says it was Olivier.

24“Protokollsätze”, Erkenntnis 3 (1932-3) 204-214. Translations here are from Otto Neurath,
Philosophical Papers 1913-1946, Reidel (1983).

25Edward Moore & Claude Shannon, “Reliable Circuits Using Less Reliable Relays”, J. Fanklin
Inst. 262 (1956) 191-297
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Perhaps the Protokollmeister regards the four individuals as equally reliable—
and as not very reliable. He thinks they are all pretty good at recognizing Gielgud’s
voice, and really bad at recognizing Olivier’s. For each of them—say, Ann—he
judges:

pr(Ann says ‘Gielgud’|It is Gielgud) = 80%
pr(Ann says ‘Gielgud’|It is Olivier) = 60%

Fact: He must judge that the master protocol, MP, does better:

pr(MP says ‘Gielgud’ | It is Gielgud)=82%
pr(MP says ‘Gielgud’ | It is Olivier)=47%26

And many more 80%/60% protocols can make a 99%/1% one.

26Proof. pr(3 ‘Gielgud’s) = 4p3(1 − p), where p = .8 (or .6) if it was (or not) Gielgud. Then
pr(3 or 4 ‘Gielgud’s) = 4p3(1− p) + p4 = p3[4(1− p) + p]. If p = .8 (or .6), this = .82 (or .47).
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II
Radical Probabilism

What used to be called ‘dogmatism’27 is the view that judgment is and ought to
be a matter of all-or-none acceptance or rejection of propositions—i.e., as close as
makes no odds, assignment of subjective probabilities 1 or 0 to propositions. But
suspense of judgment is also possible: not every proposition need be accepted or
rejected.

What I call ‘probabilism’28 is the view that we do better to encode our judg-
ments as subjective probabilities that can lie anywhere in the whole unit interval
[0,1] from 0 to 1, endpoints included. The thought is that this provides a richer
palette, allowing a more nuanced representation of our judgmental states. And
again, suspense of judgment is possible: not every proposition need be assigned a
subjective probability.

What I call ‘radical probabilism’ is the view that probabilistic judgment need
not be rooted in underlying dogmatic judgments: it can be probabilities all the
way down the roots.

2.1 Four Fallacies

Perhaps the best way to start expanding these remarks is to examine some common
misunderstandings.

2.1.1 “All probabilities are conditional.”

This is often the expression of a stalwart empiricism: ‘Your probabilities depend
on your experiences—including, perhaps, your experiences of other people’s prob-
abilistic protocols.’

27E.g., by Sextus Empiricus.
28This is not to be confused with what the ancients called by that name.
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Perhaps so. But it is a further step—and a blunder—to suppose that therefore
your new probabilities are obtainable by conditioning your old probabilities on

your current experience, old
e�→ new. This is a blunder because e (“my current

experience”29) is
(1) not a proposition in the domain of old, but
(2) a particular existent—your current experience in full detail—
(3) which is definable ostensively but not purely descriptively.

It makes sense to write ‘new(H)=olde(H)’ where ‘e’ is an index and ‘olde’ is
an ostensive definition of new, but by (1) it makes no sense to write ‘new(H) =
old(H|e)’. This point would be blunted if in (2) the particular were a particular fact,
a true proposition in the domain of old, and (3) were false, for then a description
of e could be used as a sentence, and e might be a proposition in the domain of
old after all. But according to (1)-(3), the ‘e’ in ‘new(H)=olde(H)’ is an index
identifying olde as your sequel (“new”) to old after your new experience, whatever

that may have been: old
e�→ new(=df olde).

2.1.2 “Probabilism eliminates suspense of judgment.”

Probabilism does offer a way of replacing blunt dogmatic suspensions on the one
hand and rash rejections and acceptances on the other by probabilistic judgments
corresponding to betting odds.

Examples: .01 (odds 99:1 against), .50 (evens), and .90 (odds 9:1 on), where
the salient dogmatic options might have been rejection, suspension and acceptance,
respectively.

In such ways, probabilism can offer more acceptable treatments of cases where
none of the three dogmatic options seem quite right; but it also allows for indeter-
minacies. These can be more nuanced than dogmatic indeterminacies, which are
simple suspensions.

To compare the two frameworks here it will be useful to introduce the term
‘probasition’ for a set of complete probability assignments pr to the sentences of
a language (or, what comes to the same thing, to the propositions those sentences
express30). The terminological conceit is: just as a proposition is a set of complete
truth valuations val of the sentences of L, so a probasition is a set of complete
probability assignments to the sentences of L.31

29I have been using double quotes to indicate simultaneous use and mention. Here, ‘e’ denotes
your current experience, and abbreviates the words ‘my current experience’, i.e., in your mouth.

30If the arguments of pr are sentences of, not propositions, we need an extra axiom: either ‘If
A logically implies B, pr(A) ≤ pr(B)’ or ‘If A and B are logically equivalent, pr(A) = pr(B).’

31If we take the truth values to be 1 and 0, for true and false, then, formally, a truth valuation is
the special case of a probability assignment in which only the extreme probabilities are assigned.
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Now probabilistic judgmental states of mind relative to a language L are repre-
sentable by probasitions. And the corresponding dogmatic states are representable
by propositions. Such a proposition represents suspension of judgment about a
sentence S iff there are (total) valuations in it—say, val0 and val1—for which
val0(S) = 0 and val1(S) = 1. And a probabilistic state of total suspense about S
would be represented by a probasition P containing, for every number r from 0 to
1, a probability assignment pr for which pr(S) = r.

But there is a rich spectrum of probabilistic judgmental states that lie between
definiteness32 and total suspense. Here is a small sample:
• Convex33 indefiniteness

(a) 1
4
≤ pr(S) ≤ 1

2
(b) pr(S) = .7 to one digit of accuracy

• Nonconvex indefiniteness
(c) pr(S) ∈ {1

4
, 1

2
} (d) Independence,34 pr(A ∧B) = pr(A)pr(B)

2.1.3 “Subjective = gratuitous, data-free”

32A probasition P assigns a definite value to S iff pr(S) = pr′(S) for every pr and pr′ ∈ P.
33A probasition P is convex iff for all pr, pr′ ∈ P and all a, 1− a ≥ 0, a·pr + (1− a) · pr′ ∈ P.
34In example (d) the indefinite relation of judgmental independence of A from B is represented

by P ={pr : pr(A∧B) = pr(A)pr(B)}. Convexity implies that if pr1 and pr2 are both in P then
so is pr3 =df

1
2pr1 + 1

2pr2. But suppose pr1(A) = pr1(B) = 1
4 and pr2(A) = pr2(B) = 3

4 . Then
we have pr3(A) = pr3(B) = 1

2 , so that pr3(A ∧B) = 11
32 �= pr3(A)pr3(B) = 8

32 .
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Vernacular “subjectivity” has just these connotations35—which is why I prefer the
term ‘judgmental’ and Savage preferred the term ‘personal’. But the young de
Finetti preferred the term ‘subjective’, and it is now pretty widely understood
among probabilists as a term of art, stripped of its connotations of voluntarism
and irrationalism.36

In fact, as de Finetti points out, judgmental probabilities are always equivalent
to certain probabilistic judgments about frequencies, for the following is a law of
the probability calculus:37

Your probability for any sentence S = your expectation of the relative
frequency of truths in any finite sequence S1, . . . , Sn of sentences you
see as equiprobable with S.

Then we expect our probabilistic judgments to match the statistical data: in that
sense, we see our “subjective” probabilities as objective.

Following de Finetti, we can also identify the conditions under which subjective
probabilities do and should converge limiting relative frequencies. As de Finetti
shows,38 the special circumstances under which this happens are those where you
regard a sequence of hypotheses as exchangeable, in the sense that your prob-
ability for truth of some particular t of them and falsity of some other particular
f depends only on the numbers t and f , and is independent of which particular t
were true, and which particular f false.39 Under the assumption of exchangeability,
as n→∞ your conditional probability for the n+1’st hypothesis, given the truth
values of the first n (= t + f), gets arbitrarily close to the relative frequency t

n
of

truths among the first n.

2.1.4 “The result of two updates is independent of order.”

This is true for conditioning on two propositions in turn. And in the case of
generalized conditioning on two partitions (D,E) it is true as long as the partitions

35Witness the cartoon by KA, reproduced here from “Deontological Dick,” Harvard Law
Record, 86, No. 7 (April 15, 1988), p. 9.

36For particulars about the young de Finetti, see ‘Reading Probabilismo’, Erkenntnis 31 (1989)
225-237.

37See chapter II of his ‘La prévision’, ses lois logiques, ses sources subjectives’, Annales de
l’Instutut Henri Poincaré 7(1937)1-68. In symbols, pr(S) = E( I1+...+In

n ) if pr(S) = pr(S1) =
. . . = pr(Sn). Here, Ii is the “indicator” of Si (the random variable that takes the value 1
where Si is true, and 0 where Si is false). Proof is by linearity of E, together with the property
E(Ii) = pr(Si).

38de Finetti, op. cit., chapter 3.
39Thus, with t + f = 3 tosses, of which exactly t = 2 are heads, the tail is equally likely to

turn up first, second or third: pr(H1H2H3) = pr(H1H2H3) = pr(H1H2H3).
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are viewed as independent, i.e., as long as old(Di∧Ej) = old(Di)old(Ej) whenever
Di is a cell of the D partition and Ej is a cell of the E partition.40

But in the absence of independence, order can affect the outcome. The simplest
example is also the clearest: Suppose D = E, so that there is only one partition.
Here the second assignment simply replaces the first, leaving matters as they would
have been if the first update had never happened. Then unless the two assignments
are identical, the result will depend on the order of updating.41

2.2 When is Conditioning the Way to Go?

Conditioning is the business of updating your old probabilities by making the new
agree with the old, conditionally upon some data statement: new(H) = old(H|D).

Note that ‘pr(H|D) = pr(H∧D)
pr(D)

’ is not “the definition” of conditional probability.
There are two reasons for this:

(1) In idealized examples, pr(B|A) may be defined when pr(A) = 0:
pr(The H2O is solid | Its temperature is precisely π◦F ) = 1.

(2) pr(B|A) may be defined when pr(A) and pr(A) are not:
pr(head|tossed)=1

2
although pr(head ∧ tossed) and pr(tossed) are undetermined.

Conditional and unconditional probability are different functions, of differ-
ent numbers of arguments, connected by the multiplicative law, pr(A ∧ B) =
pr(A)pr(B|A). This equation can be solved for pr(B|A) only if both pr(A) and
pr(A ∧B) are defined, and pr(A ∧B) is positive.

Now when can you consistently set new(H) = old(H|D)?

Necessary Condition #1, “Certainty”:

If new(H) = old(H|D), then new(D) = 1.

Proof. By hypothesis, new(D) = old(D|D), and by the probability calculus,
old(D|D) = 1.

But certainty is not sufficient for conditionalization. Counterexample: A card
is drawn at random from a normal 52-card deck, and you see that it is a heart, so
that new(It’s a heart) = 1. Then also new(It’s red) = 1 and new( ) = 1, so that

40For a more general independence condition, necessary and sufficient for commutativity, see
Persi Diaconis and Sandy Zabell, ‘Updating subjective probability, JASA 77 (1982), esp. pp.
825-827.

41In the notation of the previous footnote: if A=B and A = B, then prab(A) = prb(A) = b and
prba(A) = pra(A) = a. So, unless the second update simply reiterates the first (unless a = b),
order matters.
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old(It’s the queen of hearts | It’s a heart)= 1
13

old(It’s the queen of hearts | It’s red)= 1
26

old(It’s the queen of hearts |  ) = 1
52

.

Sufficiency cannot be be sufficient for conditionalization because it is impossible
that

new(It’s the queen of hearts) = 1
13

= 1
26

= 1
52

.

Taken together with certainty, the following condition is necessary and sufficient
for conditioning.42

Necessary Condition #2, “Invariance”
—in three equivalent versions:

“Constant Odds”

If B and C each imply D, then
new(B)

new(C)
=

old(B)

old(C)
.

“Constant Proportion”

If B implies D, then
new(B)

new(D)
=

old(B)

old(D)
.

“Rigidity”
For all H, new(H|D) = old(H|D).

One way to ensure that these three hold: Use a “statistician’s stooge” (I. J.
Good’s term), i.e., someone you trust to give true yes-or-no answers, with no
further information, to questions of form “D?”. (In the counterexample, above,
D = ‘The card is a heart’.)

2.3 Generalized Conditioning

Here we begin a general treatment of the sort of updating (“probability kinemat-
ics”) that was illustrated by the traffic light example in sec. 1.3 above. In general,
the thought is that an observation will change your probabilities for the answers
to a multiple-choice question from old(D1), . . . , old(Dn) to new(D1), . . . , new(Dn).
The thought is that you view the D’s as a partition, i.e., for pr = old and for
pr = new, you judge that pr(Di ∧Dj) = 0 if i �= j, and pr(D1 ∨ . . . ∨Dn) = 1. In

42For proof of equivalence, see my Subjective Probability: The Real Thing, sec. 1.9. Incomplete
2001 prepublication version on http:\\www.princeton.edu \̃ bayesway\.
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sec. 1.3 the question was ‘What is the color of the light?’, n was 3, and D1 = R,
D2 = Y , D3 = G.

In the traffic light example your new(H) was obtained as a weighted average of
your old conditional probabilities, old(H|Di); the weights were your unconditional
probabilities new(Di) for the colors. Their values, new(Di) = di, were presumably
probability protocols, arising in direct response to your visual experience.

In general we have the formula

probability kinematics: new(H) =
n∑

i=1

new(Di)old(H|Di) (1)

This is equivalent to

rigidity: new(H|Di) = old(H|Di) for all i (2)

and to the conditions of constant proportion and constant odds noted in
the previous section, with ‘Di’ on place of ‘D’.

The number by which your old odds on H:G can be multiplied in order to get
your new odds is called your ‘odds factor’ or

bayes factor: β(H : G) =df
new(H)/new(G)

old(H)/old(G)
(3)

When G : H is of form Di : D1, we abbreviate this:43

βi =df β(Di : D1) (4)

Now in view of (3) and (4), the following is an identity:

new(Di) =
old(Di)βi∑
i old(Di)βi

(5)

And in view of (1) and (5), so is the following:

new(H) =

∑
i βiold(H ∧Di)∑

i βiold(Di)
(6)

Then updating by factor protocols can always be viewed as a case of probability
kinematics, namely, the case where the weights new(Di) in (1) are not your direct
probability protocols, but are computed from factor protocols αi or βi. Often,
these factor protocols will be those of some other observer, whom you regard as
an expert, and whose factor protocols you adopt, and combine, in (5), with your
own old(Di)’s to get your new(Di)’s and, then, via (1), your new(H)’s.44

43The choice of D1 is arbitrary, i.e., the proportions β1j : . . . : βnj are the same for all j.
44See the end of sec. 2.1 of Subjective Probability for A. N. Turing’s view of log βi—what I. J.

Good calls ‘the weight of evidence’—as a direct protocol. The context was the breaking of the
“Enigma” code at Bletchley Park, in World War II.
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2.4 Collaborative Cognition

2.4.1 Exogenous Factor Protocols45

Factor protocols can be better candidates than probability protocols for the role of
reports to be pooled, Neurath-style, in the common data base, for the numbers βi

seem to dissect out of the transition old �→ new the contribution of the observation
itself, leaving the observer’s prior probabilities behind.

MEDICAL EXAMPLE. In the light of a histopathologist’s factor protocols,
you, the clinician, update your prior probability old(H) for your patient’s being
alive in 5 years. The partition has three cells:

(D1) Islet cell ca, (D2) Ductal cell ca, (D3) Benign tumor.

Here we suppose that the pathologist, having no prior probabilities of her own
for the three diagnoses in relation to your patient, sets her old(D1) = old(D2) =
old(D3) = 1

3
arbitrarily, in order to make her Bayes factors easy to compute.

(If she has definite priors for the D’s, she had better use them; the arithmetic
is no real obstacle.) The key assumption is that, as an expert histopathologist,
her Bayes factors in response to microscopic examination of the tissue sample are
independent of her priors.

Now suppose the probabilities and Bayes factors for diagnoses are the following:

D1 D2 D3 D1 D2 D3

old 1
3

1
3

1
3

↓ old 1
6

1
3

1
2

new 1
4

1
4

1
2

new 1
9

2
9

6
9

βi1 1 1 2 −→ ↑ βi1 1 1 2

P a t h o l o g i s t C l i n i c i a n

As shown above, the pathologist’s Bayes factors βi1 are:
β1 = 1 since the odds between D1 and itself are necessarily 1,
β2 = 1 since, as it happens, pr(D2) = pr(D1) for pr = old or = new,

β3 = (1/2)/(1/4)
(1/3)/(1/3)

= 2.

Now you, the clinician, will combine your own old probabilities for the diagnoses
with the pathologist’s Bayes factors to compute your new probabilities for the
diagnoses46—and, by probability kinematics, for 5-year survival (H5).

47

45Schwartz, Wolfe, and Pauker, “Pathology and Probabilities: a new approach to interpret-
ing and reporting biopsies”, New England Journal of Medicine 305 (1981) 917-923. (Not their
numbers.)

46E.g., for the diagnosis D3 that the tumor is benign, you can apply formula (5) to get the
result new(D3) = (1/2)(2)

(1/6)(1)+(1/3)(1)+(1/2)(2) = 6
9 , as in the table.

47E.g., if your old(H5|Di) = .5, .6, .9 for i = 1, 2, 3, formula (1) yields new(H5) ≈ .80, whereas,
using your old(Di)’s instead of your new(Di)’s, your old(H5) ≈ .50.
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2.4.2 Factor updating twice on a single partition is always commutative.

MEDICAL EXAMPLE, CONTINUED. Adopting a pathologist’s factor protocols
β1, . . . βn as your own, you update your old probabilities on the diagnoses to new

probabilities, old
β�→ new. But let us write old as P and new as Pβ, so that the

provenance of a probability assignment can be read off its name: P
β�→ Pβ.

Here, by 2.3(5), Pβ(Di) = P (Di)βi∑
i
P (Di)βi

.

You have also received factor protocols β′
1, . . . , β

′
n for the same diagnoses from

another sort of expert—say, a radiologist. Adopting those, you now update the

Pβ(Di)’s: P
β�→ Pβ

β′
�→ Pβ,β′ . It turns out that

Pβ,β′(Di) =
P (Di)βiβ

′
i∑

i P (Di)β1β′
1

Proof, via (5): Pβ,β′(Di) =
Pβ(Di)β

′
i∑

i
Pβ(Di)β′

i
=

P (Di)βi∑
i

P (Di)βi
β′

i

∑
i
(

P (Di)βi∑
i

P (Di)βi
β′

i)
=

P (Di)βiβ
′
i∑

i
P (Di)βiβ′

i
.

Here you have adopted the experts’ protocols in the order P
β�→ Pβ

β′
�→ Pβ,β′ ,

where β represents the pathologist’s protocols and β′ the radiologist’s. But if you

had adopted them in the other order, P
β′
�→ Pβ′

β�→ Pβ′β, first using the radiologist’s

β′’s to update your P (Di)’s to new values Pβ′(Di) =
P (Di)β

′
i∑

i
P (Di)β′

i
and only then using

the pathologist’s β’s to update the Pβ′(Di)’s to new values Pβ′,β(Di), the result
would have been the same:

Pβ′,β =
P (Di)βiβ

′
i∑

i P (Di)βiβ′
i

Proof: In the previous paragraph, interchange β’s and β′’s.

Then Pβ,β′ = Pβ′,β. And, evidently, it would have been the same if you had
updated in a single step, using the product protocols (β × β′)i =df βiβ

′
i:

P
β × β′
�−→ Pβ×β′ = Pβ′×β

2.4.3 Factor updating on different partitions is always commutative.

We prove this by comparing the results of updating P (H) successively on crosscut-
ting partitions {Di} (via factors δi) and {Ej} (via factors εj), in different orders:

(1) P
δ�−→ Pδ

ε�−→ Pδ,ε, (2) P
ε�−→ Pε

δ�−→ Pε,δ.
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We assume that the rigidity conditions hold (1) for the Di’s and (2) for the Ej’s,
so that by 2.3(6) we have

(1a) Pδ(X) =
∑

i
δiP (X∧Di)∑
i
δiP (Di)

, (2a) Pδ,ε(X) =

∑
j

εjPδ(X∧Ej)∑
j

εjPδ(Ej)
,

(1b) Pε(X) =

∑
j

εjP (X∧Ej)∑
j

εjP (Ej)
, (2b) Pε,δ(X) =

∑
i
δiPε(X∧Di)∑
i
δiPε(Di)

.

By (2a) and two applications of (1a),

Pδ,ε(H) =

∑
j

εj

∑
i

δiP (H∧Ej∧Di)∑
i

δiP (Di)

∑
j

εj

∑
i

δiP (Ej∧Di)∑
i

δiP (Di)

=

∑
i,j

δiεjP (H∧Di∧Ej)∑
i,j

δiεjP (Di∧Ej)
.

Similarly, by (2b) and two applications of (1b),

Pε,δ(H) =

∑
i
δi

∑
j

εjP (H∧Di∧Ej)∑
j

εjP (Ej)

∑
i
δi

∑
j

εjP (Di∧Ej)∑
j

εjP (Ej)

=

∑
i,j

δiεjP (H∧Di∧Ej)∑
i,j

δiεjP (Di∧Ej)
.

Then Pδ,ε(H) = Pε,δ(H): Factor updating on two partitions is always commutative.

This can be proved along the same lines for any finite number of partitions.

2.4.4 Skepticism

Neurath’s protocols (sec. 1.4.5) were imperfectly reliable unprobabilistic state-
ments, in need of screening and revision. But the same goes for probability proto-
cols, and factor protocols.

It is only in rather special circumstances that you would be well advised to
simply adopt someone else’s probability protocols as your own. The problem is
that other observers’ new(Di)’s will be determined by their prior judgments as
well as by the sensory inputs they see themselves as reporting. To adopt such
protocols is to some extent to substitute other prior judgments for your own.

Factor protocols are meant to avoid that problem. In dividing the new odds
by the old, the effects of the observer’s prior judgments are presumably factored
out, so that the result is something like a purely experiential report—a kind of
Empiricism Lite. But still, factor protocols must be scrutinized, and sometimes
modified or rejected.48

EXAMPLE: DOUBLE BILLING? When you adopt the pathologist’s factor
protocols 1,1,2 in sec. 2.4.1 you update your old probability for benign tumor to
new(D3) = 2

3
. Now suppose you ask for a second opinion, and get 1,1,2 again. A

simple soul would update 2
3

further, to (6/9)(2)
(1/9)1+(2/9)1+(6/9)2

= 4
5
. But

48Daniel Garber, “Field and Jeffrey Conditionalization”, Philosophy of Science 47(1980)142-5.
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(a) if you take the second 1,1,2 to represent the independent opinion of a second
pathologist you might not update beyond 2

3
, for you might take the second opinion

to merely endorse the first. (Together, they say: ‘1,2,2 a fortiori.’) Alternatively,

(b) the neatness and identity of the two reports might lead you to think that
no observations had been made, and reject both reports as factitious.

Moral: Ultimately, it is your own protocols that you update on. (‘Though we sit
in the seats of the mighty, we must sit on our own behind.”49) You need not adopt
expert protocols. You may well modify them in the light of your own judgment:

(a) old
β�−→ new

1�−→ new (b) old
β�−→ new

β−1

�−→ old

And this is typical: For the most part, you will factor-update twice on the same
partition only (a) trivially, or (b) to undo a mistake. The reason is that even
when the protocols come from observers with different sorts of expertese—say,
histopathology and diagnostic radiology—you will see them as positively correlated
to the extent that you see them as reliable.

2.4.5 Factor updating on independent partitions

On the other hand, if you accept exogenous sets of factor protocols on crosscutting
partitions that you see as independent, you may well update successively on both.

EXAMPLE. The two partitions contain diagnoses Di regarding cancer and Ej

regarding heart disease for your patient. You receive Bayes factors δi for the Di’s
from an oncologist (o), and Bayes factors εj for the Ej’s from a cardiologist (c):

newo(Di)
newo(D1)

/ oldo(Di)
oldo(D1)

= δi,
newc(Ej)

newc(E1)
/ oldc(Ej)

oldc(E1)
= εj.

You are a clinician, wishing to provide your patient with informed probability
judgments for s-year survival (Hs) for s = 1, 5, etc. in the light of these experts’
opinions and your own prior probability assignment, old. If you initially judge the
two diagnostic partitions to be independent, you may well choose to adopt both
sets of Bayes factors, in either order—say, δ, ε:

old(H5)
δ�−→ oldδ(H5)

ε�−→ oldβ,β′(H5). (1)

Note the rôle played by your original judgment of independence, old(Di∧Ej) =
old(Di)old(Ej). In updating by probability protocols, it is this substantive judg-
ment that guarantees commutativity. But here, where updating is by factor proto-
cols, the rôle of your judgment of independence is to assure you that their automatic
commutativity is indeed what you want: See (a) and (b) below.

49‘Et au plus élevé trône du monde, si ne sommes assis que sur notre cul.’ (Montaigne, ‘On
Experience’)
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(a) Updating on Bayes factors δi, εj as in (1) has the same effect as updating
on probabilities di, ej as follows,

old(H5)
d�−→ oldδ(H5)

e�−→ oldδ,ε(H5), (2)

where, by 2.3(5), di = old(Di)δi∑
i
old(Di)δi

and ej = oldδ(Ej)εj∑
j

oldδ(Ej)εj
. Now by 2.3(6), εj =

∑
i
δiold(Ej∧Di)∑
i
δiold(Di)

. Given your judgment that the D’s and E’s are independent, this =
∑

i
δiold(Ej)old(Di)∑

i
δiold(Di)

= old(Ej), so that the probabilities d, e in (2) are

di =
old(Di)δi∑
i old(Di)δi

, ej =
old(Ej)εj∑
j old(Ej)εj

(3)

(b) If we factor-update in the other order,

old(H5)
ε�−→ oldε(H5)

δ�−→ oldε,δ(H5), (4)

the probability-updates that yield the same results are of form

old(H5)
e′�−→ oldε(H5)

d′�−→ oldε,δ(H5), (5)

where by 2.3(5), e′j = old(Ej)δj∑
j

old(Ej)δj
= ej and d′i = oldε(Di)δi∑

i
oldε(Di)δi

, which, by 2.3(6) and

your judgment of independence, = di.

Then your judgment old(Di ∧Ej) = old(Di)old(Ej) ensures that the automatic
commutativity in updating by factor assignments δ, ε to partitions D,E corre-
sponds to updating by probability assignments d, e to those same partitions—
probability assignments whose commutativity is not an automatic result of the
formalism, but reflects a substantial judgment on your part.

6 Appendix: Notes on Heavy Radical Probabilism

2.6.1 Beyond Generalized Conditioning

Where the invariance conditions are not satisfied by your upcoming observation,
generalized conditioning is no way to go. But there may be other moves you can
make:

(1) The Problem of New Explanation (“Old Evidence.”50). Here, seemingly,
P (H|evidence) = P (H). Example: Einstein’s discovery that the already well

50Clark Glymour, Theory and Evidence (1980), chapter 3.
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known anomalous advance in the perihelion of Mercury was explicable by the
GTR. A sometimes applicable solution is “probability reparation.”51

(2) Temporal Coherence,52 Reflection,53 Condition M.54 These say: “Current
probability judgments are current expectations of future probability judgments.”
This condition holds wherever invariance holds for an observable partition.

(3) Beyond Temporal Coherence: Expected Irrationality. Arriving at the party,
you give your car keys to a friend to hold until you are home—because you expect
that later in the evening it will be your drunken wish to drive home. This wise
choice violates (2) above. (So does probability reparation.)

2.6.2 Gappy Probabilities; Fine Points for Mavens

It’s OK to have gappy probability assignments—e.g., because. . .

(1) In updating old�−→new by probability kinematics, you make no use of the
prior old(Di)’s, which can therefore be undefined.

(2) In evaluating your desirability for an act, i.e., your conditional expectation
of utility given the act, you make no use of the prior probability of the act—which
is best left undefined.

Spohn55 and Levi are troubled by this.56 Thus, Spohn observes that

pr(A) =
pr(B)− pr(B|Ā)

pr(B|A)− pr(B|Ā)
if pr(B|A) �= pr(B|Ā),

so that if B (a state of nature) is not pr-independent of A (an act), and pr(B|A)
and pr(B|Ā) are both defined, then pr(B) must be undefined if pr(A) is. They
seem to view this as a reductio ad absurdum of the idea that you can intelligibly
have subjective probabilities for propositions you see as within your power to make
true or false.

51For an elementary exposition and further references, see my Subjective Probability, sec. 2.10,
2.11(8), on http:\\www.princeton.edu \̃ bayesway\. See also Carl Wagner, “Old evidence and
new explanation III” (forthcoming), which reviews and extends his “Old evidence and new ex-
planation I” and “. . .II” in Philosophy of Science 64 (1997) 677-691 and 66 (1999) 283-288.

52Michael Goldstein: The Prevision of a Prevision JASA 78 (1983) 231-248. “Prior Inferences
for Posterior Judgments”, Structures and Norms in Science, ed. Maria Luisa dalla Chiara et al.
(1997) 55-72.

53Bas van Fraassen: “Belief and the Will”, J. Phil. 81 (1984) 235-256.
54Brian Skyrms, The Dynamics of Rational Deliberation (Harvard, 1990).
55Wolfgang Spohn, ‘Where Luce and Krantz do Really Generalize Savage’s Decision Model’,

Erkenntnis 11 (1977) 114-116.
56Isaac Levi, The Covenant of Reason (1997) 73-83.
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(2) Your judgment pr(A∧B) = pr(A)pr(B) of independence makes sense even
when you have no P values in mind.

(3) At an early stage of deliberation, old and new probabilities may be “entan-
gled” in the sense that you take the invariance conditions new(H|Di) = old(H|Di)
to hold for all H and i, but have not yet set numerical values new(H|Di) =
old(H|Di) = ci. Setting them disentangles new and old, for you then have sepa-
rate conditions, old(H|Di) = ci and new(H|Di) = ci, from which the invariance
conditions follow.

2.6.3 Mad-Dog Subjectivism57

(1) There are no “real” probabilities out there for us to track,

(2) nor are there uniform probability-makers,58

(3) but there can be averages or symmetries out there, in view of which we find
certain judgmental probability assignments irresistible,

(4) as happens when we use probabilistic theories—notably, quantum mechan-
ics. The probabilities it provides are “subjective” for us, i.e., we adopt them as our
judgmental probabilities, but they are objective in the sense (3) of being shared
and compelling.

57This is pure de Finetti, going back to his “Probabilismo” (1931). For more about it, with
further references, see Bas van Fraassen, Laws and Symmetries (1989), e.g., pp. 198-199 regarding
(4).

58E.g., relative frequencies to date do not reliably deliver acceptable probabilities (think: Grue);
nor will your dogmatic Protokollsätze to date serve as a condition on some Laplace/Carnap ur-
prior that yields acceptable judgmental probabilities for you.
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