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Abstract

In this paper a critical analysis and an original formalization of the
coherent conditional prevision by Bruno de Finetti is presented. More-
over some generalizations, applications and allied algebraic structures are
introduced.

1 Introduction

In the fundamental books on ” Teoria delle Probabilita” [1], by Bruno de Finetti,
two different approaches to the conditional probability and prevision are con-
sidered.

One of these starts from the axiomatic of the finitely additive conditional
probability. It is based on the Boolean operations on events and is considered
in all the books or papers on the subjective probability (see e.g. [2], [3]). This
theory is formalized in [4]. Further considerations that confirm the validity of
the theory of de Finetti are in [5].

The second, in ”Appendice”, of [1], Vol. 2, pp. 718723, considers the ax-
iomatic of the coherent conditional prevision and is based on the linear algebra.
The mathematical tools of this axiomatic are similar to the ones used in mul-
tivariate statistics, fuzzy logic, decision theory, join geometry, and other new
mathematical theories.

The aims of this paper are: to present a formalization of the coherent con-
ditional prevision, to give a critical analysis of the fundaments of such theory,
and to study some applications or generalizations of the results obtained, useful
to the cited mathematical theories that use similar mathematical tools.

We consider a particular formalization of the concepts, matured with many
meditations, that extends the ones introduced in [10], so some proposed defini-
tions are different from the ones of the mathematical literature.
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The conditional prevision is considered also in the book of Walley [6]. Like
de Finetti and unlike Walley, we don’t assume the conglomerative condition for
infinite partitions and in general we don’t assume the o-additivity. We con-
sider only conditional random numbers and their relations. Then the relations
between conditional and unconditional probabilities have not importance, in
particular for our theory no difference is between the cases in which the uncon-
ditional probability of the conditioning event is positive or null. We assume as
basilar concepts the ones we introduce of extension, simple extension, reqular
and semi-regular family of conditional random numbers, that are the tools for
our theory on coherent conditional prevision.

2 On the concept of H-conditional random num-
ber

In the sequel we denote with () the impossible event. For every E, E° is the
contrary of E. For any pair of events (E, H), with H # (, like de Finetti’s, the
conditional event F/H is a proposition that assumes the values: true, if FH is
verified, false is F°H is verified and undetermined if H° holds.

Let H be a non impossible event.

Definition 1 A partition II of H is a non empty family of non impossible
events, pairwise disjoint and such that their union is equal to H .

Definition 2 Let 11y and Iy be two partitions of H. The product 111 o Iy is
the partition {AB : A €1}, B € I, AB # (}.

Definition 3 Let I be a partition of H. We call "H-conditional random
function” with domain D(F) = II any function F : Il — R. For any x €
Im(IT), F~!(x) is the union of all the A € Il : F(A) = x. The partition, of H,
D*(F) = {F~Y(x),z € Im(I)} is called the reduced domain of F and the
H -conditional random function F* : F~Y(x) € D*(F) — z € R is the reduced
form of F.

If A is another partition of H we call "refinement” of F with A the H-
conditional random function G : o A — R, noted r(F,A), such that:

(RF) VAell,BeA, AB# ()= G(AB)=F(A).

We have the following:

Proposition 1 Let ®y be the set of all the H-conditional random functions.
The relation p such that, VF, Fy € @&y, FipFs iff F1 and F» have the same
reduced form is an equivalence relation.

If D(Fl) =11, D(Fg) = A then Flng — T(Fl,A) = 'I’(FQ,H).
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Definition 4 A H-conditional random number X is an equivalence class
of @y as to p, that is an element of the quotient set Qg =Py /p. If F € X, we
write X = [F] and F is said to be a representant of X. The domain of X is
the reduced domain D*(F') of the elements of X and the image of X, Im(X),
is the image of the elements of X. We denote with X* the reduced form of the
elements of X, called also reduced form of X.

Definition 5 Let Fy, with domain II, and Fy with domain A, be two H-
conditional random functions. We write Fy < Fy iff r(F1,A) < r(Fy, II).

Proposition 2 Let X and Y be two H-conditional random numbers. If there
exist F1 € X, Fy €Y : F} < Fy, then for any G1 € X,Gy € Y we have G < G,
and we write X <Y . The < is an order relation on Qg.

Definition 6 A H-conditional random number X is said to be:
- constant or degenerate if Im(X) is a singleton {a}, we write X = a;
- bounded or limited if Im(X) is bounded;
- finite if Im (X)) is finite;
- H-event if Im(X) C {0,1};
- fuzzy H-event if Im(X) C [0, 1].

Usually, if there is not possibility of misinterpretations, a H-event X is
identified with the conditional event X ~1(1)/H.
If X is a bounded H-conditional random number, we put:
inf(X) = inf(Im(X)) and sup(X) = sup(Im(X)).

Definition 7 Let o be an operation on R. The extension of o to @y, noted
also o, is the function
o (Fl,Fz) €y x by — FioFy,
with FioFy the H-conditional random function such that:
VA € D(Fy),B € D(Fy), AB# 0, (FioF5)(AB) = Fy(A)o F5(B).
The extension of o to R X ® g, noted o*, is the function
o (¢, F)e Rx Py — co*F,
with co™F the H-conditional random function such that:
VA € D(F),Vc € R, (co*F)(A) = coF (A).

We have: VF17F2,G1,G2 € &y, (FlthngGQ) — (FlUFQ),D(GlUGg)
and,Vc € RVF,G € Oy, FpG = (co*F)p(co*G). Then, we can extend ¢ and
o* respectively to Qg and Rx Qg by putting VF,,Fy € Oy, [F1]o[F2] = [Fio F)
and Ve € R,VF € ®p,co*[F] = [co*F].

If we consider the usual addition + and multiplication - on R, and we write
x for -*, we have:

Proposition 3 (Qu,+,*) is a vector space on R. Qu.r, set of bounded H-
conditional random numbers, and Qu r, set of finite H-conditional random
numbers, are subspaces.
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(Qu,+,-) is a commutative ring with unity the random H -conditional num-
ber equal to 1, that is the conditional event H/H. Qu,1 and Qu r are subrings.
(Qu,+,- %) is an algebra on R. Qu 1 and Qu p are subalgebras.

3 H-conditional prevision

In the sequel, to avoid undetermined forms, we consider only bounded H-
conditional random numbers. Many of results can be extended to the general
case.

Let H be a non impossible event.

Definition 8 Let Sy be a set of bounded H-conditional random numbers. We
define H-conditional prevision on Sy any function P : Sy — R such that:

(HCP1) Va,be RVX €Sy, a<X<b=a<PX) <

(HCP2) VX, YeSy, X+YeSy—=PX+Y)=PX)+PY).

We call "extension of P” any H -conditional prevision on a set S of bounded
H -conditional random numbers containing Sg. We say that P is coherent if
there exists an extension of P to the vector space V(Sy) generated by Sg.

Let Sy be a set of bounded H-conditional random numbers and let P be
a H-conditional prevision on Sy. By repeating, with little modifications, for
the H-conditional random numbers the proofs of the analogous theorems on the
random numbers given in [1] or in [9], we can prove the following:

Proposition 4 We have:
(C1) H/H e Sy = P(H/H)=1;
(C2) VXeSyg, X>0= P(X)>0;
(C3) VX, YeSy, X<YY-XeSy= PX)<P(Y).

Proposition 5 If P is coherent then there exists a unique extension P* of P
to V(Sg) and we have:
(HC'PS’) Vn e N, VXq, Xo,..., Xy, € Sy, Veq,ca, .0 € R,
P*(Cle + 02X2 —+ ...+ Can) = Clp(Xl) + CQP(XQ) + ...+ C,,LP(X").

Proposition 6 If P is coherent then we have:
(HCP4) Vn e NVXy,X,5,.... X, € Sg,Ver, ¢, ..ycnyc €R,
X1+ cXo+ oo+ enXn <c= 1 P(X1)+c2P(Xa2)+ ... + cn P(X,) < ¢
(HCP5) Vn e NVXy,X,,.... X, € Sy, Ver, ¢, .ycnyc €R,
X1+ cXo+ oo+ enXn >c= 1 P(X1)+c2P(Xa2) + ... + cn P(X,) > ¢
(HCP6) Vn € NVXy,X,5,..., X, € Sg,Ve1, ¢, .ycnyc €R,
X1+ cXo+ .+ enXp=c= c1P(X1)+c2P(X2)+ ... + cn P(X,) = ¢
(HCP7) Vn e NVXy,X,,....X, € Sg,Ver1,¢2,...,¢, € R,
sup[c1 (X1 — P(X1)) + 2(X2 — P(X2)) + ... + en(X,, — P(X,))] > 0,
(HCP8) Vn € NVXy,X,,...X, € Sg,Ve1,¢2,...,¢, € R,
infle; (X1 — P(X1)) +c2(Xo — P(X3)) + ... + (X, —P(X,))] <0.
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Proposition 7 Let P : Sy — R. If at least one among (HCP4), (HCPS5),
(HCP7) and (HCPS8) holds, then P is a coherent H-conditional prevision.

4 Conditional prevision

4.1 Extensions of H-conditional random numbers

Definition 9 Let X be a H-conditional random number and let Y be a K-
conditional random number, with H C K. We say that Y is a K -extension of
X or that X is equal toY conditioned to H, we write X =Y/H, if:

(KE1) D(X)={AH#0:AeDY)}

(KE2) VYAeD(Y): AH#0,X(AH) =Y (A).

We denote with X T K the set of all the extensions of X to K.

We say that' Y is a simple K-extension of X if:

(SE1) Y e X 1 K;

(SE2) JAeD(Y): AD K — H.

If Y(Z) = a we write Y = X% and we say that a is the value of the simple
K -extension Y of X.

We denote with XX the set of all the simple extensions of X to K. We
assume X = X4 Ya € R.

It is easy to prove the:

Proposition 8 We have:
(EP1) Y is a K-conditional random number<—=Y =Y /K,
(EP2) Y=Y/K,0AHCK—=—Y/H=YH/H=(Y+aH®)/H,Va € R;
(EP3) VYa,b€ R, X=X/HHCK=— XK*=XKby (a-bH/K,;
(EPj) X =X/H= XTH=X=X"VvaecR.

Let H and K be two non impossible events with H C K and let Sy and Sk
sets, respectively, of H-conditional and K-conditional random numbers.

Definition 10 We say that (S, Sk) isclosed as to the simple K-extensions
if:

(CSE]) H/HESH, K/KESK;

(CSE2) VYa€ R,VX € Sy, XX € Sk.

We say that (Sp,Sk) is semi-closed as to the simple K-extensions if
it satisfies (CSE1) and

(CSEQW) VXGSH, XK’OESK.

Proposition 9 If (Su, Sk) is semi-closed as to the simple K -extensions then
(V(SH),V(SK)) is closed as to the simple K -extensions.
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Proof. If X € V(Sy), there exist n € N, a1, az,...,an € R, X1, Xo,..., X,, € Sy
such that X = a1 X;4+a2Xs +...+a,X,. Since (Sy, Sk) is semi-closed as to the
simple K-extensions we have X %0 = a1X1K’0 +a2X2K70+... +a, XKV e V(Sk).
Moreover, H/K = (H/H)XY € Sy and so H°/K = K/K — H/K € V(Sk).
Then, from (EP3), Ya € R, we have X% = X¥.0 1 of¢/K € V(Sk)

Definition 11 Let Py and Pk be, respectively, a H-conditional prevision on
Sy and a K-conditional prevision on Sk, with H C K, and such that (Sg, Sk)
is closed as to the simple K -extensions. We say that (Py,Px) has the property
of relative coherence if:

(RO) VXESH,HCLERZPK(XK"U‘):PH(X):CL.

Remark 1 By an intuitive point of view, an element X of Sy is interpreted as
the winnings of a player A in a lottery Ly that occurs is H is verified, with stake
Py (X), and X%:@ s the winning of A in a lottery Lx occurring if K is verified,
with stake Px (X%@). Let Gy = X — Py(X) and Gg = X5K@ — P (X%K:2) be
the gains of A, respectively with Ly and Li. If (RC) holds we have Gy = Gk
if H is verified and G =0 if K — H occurs. If we assume that the gain null
s equivalent to not play, then the lotteries Ly and Ly are equivalent.

In general, if we assume only the condition Px(X™*) = Py(X), we have
Gy = G if H is verified and there is no lottery if K¢ holds. If K — H occurs
we have G = a — Py (X)) while the lottery Ly is not played. In this case Gk
may have many interpretations, e.g. as the interest for the anticipation of the
capital Py (X) if a > Py (X) or as the price for the activation of L also when
K — H occurs if a < Py (X).

In this paper we assume Ly and Lk are logically distinct also if (RC) holds.

In the sequel we assume H and K are non impossible events with H C K, Sy
and Sk are two sets, respectively, of H-conditional and K -conditional random
numbers, and Py and Px are, respectively, a H-conditional prevision on Sg
and a K-conditional prevision on Sk .We have:

Proposition 10 Suppose (Sg, Sk) is closed as to the simple K -extensions and
Py and Pk are coherent. If (Py,Pxk) has the property of relative coherence,
P}, is the extension of Py to V(Sy) and P} is the one of Px to V(Sk), then
also (P}, Py) has the property of relative coherence.

Proof. Let X be an element of V(Sg). Then there exist n € N, aq, ag,...,a, €
R X1,X9,.,. X, €Sy : X =1 X1+aXo+...4+a,X,. Let [ = {1,2, ,n}
Since (P, Pk ) has the property of relative coherence, Vi € I there exists ¢; €
R such that Py(X;) = Px(X[%) = ¢. Let Y = ¥, ;a;X/"% and ¢ =
> ier @ici. Since Py and Py are coherent we have Py (X) =3, ;a;Pu(X;) =
SieraiPe(X) = PE(Y) =cand Y = X5 e V(Sk). A

iel
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Definition 12 Suppose (Su, Sk) is semi-closed as to the simple K -extensions.
We say that (Py, Pr) has the property of multiplicative coherence if:
(MC) VX € Sy, Px (X%%) = Py(X)Px (H/K).

If Z€ Sk NX T K then X*Y=ZH/K,X = Z/H and so we have:

Corollary 11 Suppose (Sg,Sk) is semi-closed as to the simple K -extensions.
Then (Py, Pk ) has the property of multiplicative coherence if and only if:
(MCM) VX e€Sy,VZe SkNX 1K, Px(ZH/K)= Py(Z/H)Px(H/K).

Proposition 12 Suppose that:

(1) (Su, Sk) is semi-closed as to the simple K -extensions;

(2) Py and Pk are coherent;

(3) S} is the union of Sk and the set of all the simple K-extensions of the
elements of Sy;

(4) Pg is an extension of Pk to V(Sk).

Then (Pw, P ) has the property of relative coherence if and only if (Pg, Px)
has the property of multiplicative coherence.

Proof. Assume (Py,Pj) has the property of relative coherence. Then:

VX € Sy,3da€ R: P (X5 = Py(X) = a.

From the coherence of Pj and (EP3) we have:

P (X5:0) = P (XEO) +aPf(H /K ) = a, with a = Py (X), Pji(H°/K) =
1 - Pg(H/K) and so (MC) follows.

On the converse, if (Py, Px) has the property of multiplicative coherence,
we have (MC). If we put Py (X) = a, we have:

Pic(X50) = a(1— Py (H* [ K)).

From (EP3) it is equivalent to Py (X**) = Py (X) = a and so (RC) holds. H

4.2 Coherent conditional prevision

We say that X is a conditional random number if there exists a non im-
possible event H such that X is a H-conditional random number. By previous
theory we are induced to give the following:

Definition 13 Let T be a non empty family of non impossible events. We say
that S = UgerSy is a regular family of conditional random numbers if:

(RF]) HieT HeT— H UH; €T;

(RF2) YH €T, Sy is a family of H-conditional random numbers such
that H/H € Sg;

(RF8) H e€T,K € T H C K == (Su,Sk) is closed as to the simple
K -extensions.

We say that S is a semi-regular family of conditional random numbers if
it satisfies (RF1), (RF2) and:

(RFSW)H e T,K € T,H C K = (Su, Sk) is semi-closed as to the simple
K -extensions.
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Definition 14 Let S = UgerSy be a regular family of conditional random
numbers. We say that a function P : S — R is a coherent conditional
prevision on S if:

(CCP1) YH €T, the restriction Py of P to Sy is a coherent H -conditional
Prevision;

(CCP2) HeT,KeT HCK= (Py,Px) has the property of relative
coherence.

Definition 15 Let S be any set of conditional random numbers. We say that
a function P : S — R is a coherent conditional prevision on S if there
erists an extension P* of P to a regular family of conditional random numbers
S* D S such that P* : S* — R is a coherent conditional prevision on S*.

By previous definitions and proposition 12 we have:

Proposition 13 Let S = UgcrSy be a semi-reqular family of conditional ran-
dom numbers. We have that a function P : S — R is a coherent conditional
prevision on S if:

(CCP1W) YH € T, the restriction Py of P to Sy is a coherent H-
conditional prevision;

(ccpe2w) H e T,K € T H ¢ K = (Py,Px) has the property of
multiplicative coherence.

In the sequel, if H and K are events with 7 # H C K and X is a H-
conditional random number with prevision Py (X), we put:

XEx = XK with a = Py(X), for HC K, XE* =X for H=K.

By definition 13 and propositions 6 and 7 we have the following;:

Proposition 14 Let T be a family of non impossible events and let S = Uger Sy
be a regular family of conditional random numbers.
A function P : S — R is a coherent conditional prevision if and only if:
(NSC1) VH,K € T,HC K = Pg(X%*) = Py(X)
and at least one of the following properties holds:
(NSC24) V¥n € NNVX, = X;/H; € S,i € {1,2,...,n}, Ver,¢, ...,y €
R,if K =U! H; then
chf(’*—l—cQXQK’*—I—...—I—chf’* <c= 1 P(Xy)+caP(X2)+ ...+ ¢, P(X,) <¢;
(NSC2B) Vn € NVX; = X;/H; € S,i € {1,2,...,n}, Vei,¢,...,CpyC €
Ryif K =UH; then
X e X e, XK > ¢ = ¢ P(X1) +coP(X2) 4.+ P(X,) > ¢
(NSCQC) Vn € N,VXZ = Xz/Hz S S,Z € {1,2, ...,TL}, VCl,CQ7 .y Cp € R,Zf
K =U} | H; then
supler (X1 = P(X1)) 4 ¢a(Xa ™ = P(X2)) + oo + en (X" — P(X,))] > 0;
(NSCQD) Vn € ]\/v,V)(Z = X,L/HZ S S,Z S {1,2,...,"’1,}, VCl,CQ,...7Cn € R,Zf
K =UL H; then
infler (X7 = P(X1)) + (X35 = P(X2)) + . + ¢ (X" = P(X,,))] < 0.
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5 Assessment of coherent conditional previsions

Let F ={X; = X,;/H;,i € I = {1,2,....,m}} be a finite set of finite conditional
random numbers and let K = U;crH;. Denote by D} the set D(X;) if H; = K
and the set D(X;)U{K — H;} if H; C K. The product D = DioD}o..0D} is
a partition of K and, Vi € I, any simple K-extension of X; belongs to V(D/K),
vector space generated by the set {A/K, A€ D}.

Let D = {Aj,j S J} and, Vie 1,5 € J, 67;]‘ = OlfAJ * H; and 6ij =1if
A; C H;. There exist real numbers a;j, ¢ € I, j € J, such that:

(B1) X[ =Y a4;/K;  (B2) Hi/K=Y,.,68;4;/K.

Let T be the set of the finite unions of the elements H;, i € I. By (E1) and
(E2) we have also, VH € T : H; C H,

(B3) Xx,/"= > jes aijAj/H; (B4) H;/H =3, ;6;;A;/H.

Forany H € T, we put Sy = {X"": H; C HYU{A;/H,j € J}U{H'/H :
H' € T,H C HYU{)/H}. Since H C H' = (A;/H)"'0 € {§/H',A;/H'} we
have that S = Ug 7Sy is a semi-regular family of conditional random numbers.
If P is a coherent conditional prevision on S, then the restriction Py of P to
Sy satisfies the conditions:

(CCP1) Pu(X{™") =, yai; Pu(A;/H), Vi€l :H;CHeT;

(CCP2) Y0, Pul(A;/H) =1, Py(A;/H) >0, € J.

The conditions (CCP2) are also sufficient to assure the coherence of the
restriction of Py to the conditional random numbers A, /H and so the existence
of the numbers a;; satisfying (CCP1) with the conditions (CCP2) is necessary
and sufficient for the coherence of Py .

Then, by proposition 13, the coherence conditions on P are:

(CCC) Y0, PIA/H) =1, P(A;/H)>0,7j €.

(CCD) VjeJVHH e€eT:HDH' DA;, P(A;/H)P(H'/H)=P(A;/H).

Viel weput K; =max{H €T : H; C H,P(H;/H) > 0}. We can prove
the:

Proposition 15 The set {K;,i € I} is totally ordered as to the inclusion with
mazimum K and if the conditions (CCA), (CCB), (CCC) and (CCD) hold for
H =K, then, Vi € I, they are valid alsoVH : H; C H C K;.

By previous considerations and proposition 15 we deduce an algorithm to
verify the coherence of an assessment of values P(X;),¢ € I that extends to the
conditional random numbers the one considered in [2] for conditional probabil-
ities.

Suppose we assign the values P(X;),7 € I. If such assessment is coherent,
by considering H = K and the ZJK = Pg(A;/K) as unknowns, the equations
(CCA), (CCB) with the conditions (CCC) must have solutions.
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If ZK = (zjK,j € J) is a solution, for any ¢ € I we can have two cases:

(a) P(H;/K)>0, (b) P(H;/K)=0.

Let I* = {i € [ : P(H;/K) > 0}. By (CCC) I* # O and, Vie [*, He T :
Aj C H,weput P(A;/H) = P(A;/K)/P(H/K)with P(H/K) =3 . c y P(4;/K).
By proposition 15 we have that all the coherence conditions (CCA), (CCB),
(CCC) and (CCD) are satisfied for any i € I*.

For the X; such that (b) holds, (CCA) and (CCB) are undetermined and
we cannot apply proposition 15. We put F!' = {X; € F : P(H;/K) = 0} and
K'=U{H;: X; € F'}.

To verify the coherence of the assessment of the P(X;), X; € F! we must
reiterate the previous algorithm by replacing F with F! and K with K*.

By (CCC) it follows that the algorithm, since F is finite, has a finite number
of steps and so it permits to conclude if the assessment of the P(X;),i € I, is
coherent or not.

6 New results and applications

6.1 General coherence conditions by a fuzzy partition

Definition 16 Let Z; = Z; /K, j € J = {1,2,...,n} be fuzzy K -events such
that 1 € Im(Z,), Vj € J. We say that the set {Z;,j € J} is a fuzzy partition
of K/K if:

(FP1) Y., 2/ K = K/K.

Proposition 16 Let 1 = {Z; = Z;/K,j € J = {1,2,...,n}} be a fuzzy parti-
tion of K/ K. A function P : Il — R is a coherent K -conditional prevision on
IT if and only if

(C1) ¥ ,e,P(Z)=1, (C2) Vje J P(Z;)>0.

Proof. It is sufficient to prove that, Vj € J,Vc; € R:

(a) ianjech[Zj —P(Z)] <0 or (b) supzjeJ ¢i|Z; — P(Z;)] > 0.

Without loss of generality, we can suppose ¢; > 0 and ¢; > max{|c;|,j € J}.
If we put Z; = 1, by (C1) and (C2) we have:

Zje] Cj[Zj - P(Zj)} =C1 — ZjGJ CJ'P(ZJ') >0

and so (b) holds. l

Let F = {X; = X,/H;,i € T = {1,2,...,m}} a finite set of conditional
random numbers and let K = U, H;. If any XiK’O and any H;/K is linearly
dependent on the Z;, then there exist real numbers a;; and b;; such that:

K0

If Px is a coherent K-conditional prevision on the set {X°, Hi/K,i €
Itu{Z;,j € J} then we have:

(FCCP1) Px(X{) =3, ai; Pk (Z;),Vie I,

(FCCP2) PK(HZ/K):ZJGJ b”PK(ZJ),V’LGI,
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with the conditions (C1) and (C2).

If P: FF — R is areal function, we can have the conditions for P is a
coherent conditional prevision on F' by considerations analogous to the ones of
the previous paragraph, by replacing A; /K with Z; and 6;; with b;;,and with
some other suitable modifications.

6.2 Applications to the Decision Theory

In Decision Theory under Uncertainty (see e.g. [7]) a decision maker must
choose among a set A = (41, Aa, ..., Ay) of acts but the relative desirability of
each act depend upon which ” state of nature’, in a set S = (51,S53,...,5,), is
verified. The desirability is measured by an utility function v : A x S — R
that to any (A4;,S;) associates a real number u;; that is the utility of the act A;
if the state of nature S; prevails. The states of nature are events that form a
partition of the certain event and any act is a random number with domain S.
There are two extreme possibilities: the complete knowledge of the probabilities
a priori of the states of nature, in this case we say that we have a decision under
risk, and the complete ignorance of such probabilities. In the first case the best
decision criterion is the choice of the act with maximum utility prevision and in
the second case the choice of the act that maximizes the minimum payoff.

A generalization of the classical model is to consider as states of nature the
elements of a set S; = S; /K of K-conditional random numbers. In this case we
have that any act A; is also a K-conditional random number and a fundamental
importance has the choice of a coherent assessment of a K-conditional prevision
on the set AU S.

Particular interesting situation is the one in which S is a fuzzy partition of
the certain event, or, in general, of the conditional event K /K.

6.3 Algebraic properties of extensions of conditional ran-
dom numbers

We assume the fundamental definitions on the hyperstructures given in [8].
Let S be a set of conditional random numbers such that:
(CAE)VX = X/H,,Y=Y/H, €S, (X 1 (HHUH))U(Y T (HUH>)) CS.
We can consider the hyperoperation o on S such that:
VX =X/H,Y=Y/Hy, €S, XoY =(X 1 (H,UH))U(Y 1 (Hy UHa)).
It is easy to prove the:

Proposition 17 (S,0) has the following properties.
(HA1) VX € S,XoX =X; (ois idempotent)
(HA2) VX,Y €S8 XoY =Y oX; (commutativity)
(HA3) VX,Y,Z €S, (XoY)oZ=Xo (Y oZ). (associativity)
Then (S,0) is an idempotent and commutative semihypergroup.
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Remark 2 (S,0) is not a hypergroup because there exists Z € S : X o Z =Y,
with X = X/H,, Y =Y/H, if and only H; C H,.

We can consider also the hyperoperation * on S such that:
VX = X/H,,)Y =Y/Hy € S, X xY = XUy yH1UHs,
We can prove the:

Proposition 18 (S, %) has the following properties.
(HB1) VX €S, X +X = X;
(HB2) VYX,Y €S,X+Y =Y % X;
(HB3) VX,Y,Ze€S,(X*Y)*xZNX x (Y xZ) # 0. (weak associativity)
Then (S, *) is o« commutative and weak associative hypergroupoid.

Remark 3 Like to the hyperstructure (S,o), there exists Z € S : X« Z =Y,
with X = X/H,,Y =Y/H, if and only Hy C Hy. Unlike (S,0), (S, *) has not
the associative property because, if X = X/H1 and H1 C H2 C H3 a simple
extension to H3 of a simple extension of X to Hs is not, in general, a simple
extension of X to Hs.
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