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Abstract

In this paper a critical analysis and an original formalization of the
coherent conditional prevision by Bruno de Finetti is presented. More-
over some generalizations, applications and allied algebraic structures are
introduced.

1 Introduction

In the fundamental books on "Teoria delle Probabilitµa" [1], by Bruno de Finetti,
two di®erent approaches to the conditional probability and prevision are con-
sidered.

One of these starts from the axiomatic of the ¯nitely additive conditional
probability. It is based on the Boolean operations on events and is considered
in all the books or papers on the subjective probability (see e.g. [2], [3]). This
theory is formalized in [4]. Further considerations that con¯rm the validity of
the theory of de Finetti are in [5].

The second, in "Appendice", of [1], Vol. 2, pp. 718-723, considers the ax-
iomatic of the coherent conditional prevision and is based on the linear algebra.
The mathematical tools of this axiomatic are similar to the ones used in mul-
tivariate statistics, fuzzy logic, decision theory, join geometry, and other new
mathematical theories.

The aims of this paper are: to present a formalization of the coherent con-
ditional prevision, to give a critical analysis of the fundaments of such theory,
and to study some applications or generalizations of the results obtained, useful
to the cited mathematical theories that use similar mathematical tools.

We consider a particular formalization of the concepts, matured with many
meditations, that extends the ones introduced in [10], so some proposed de¯ni-
tions are di®erent from the ones of the mathematical literature.
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The conditional prevision is considered also in the book of Walley [6]. Like
de Finetti and unlike Walley, we don't assume the conglomerative condition for
in¯nite partitions and in general we don't assume the ¾-additivity. We con-
sider only conditional random numbers and their relations. Then the relations
between conditional and unconditional probabilities have not importance, in
particular for our theory no di®erence is between the cases in which the uncon-
ditional probability of the conditioning event is positive or null. We assume as
basilar concepts the ones we introduce of extension, simple extension, regular
and semi-regular family of conditional random numbers, that are the tools for
our theory on coherent conditional prevision.

2 On the concept of H-conditional random num-

ber

In the sequel we denote with ; the impossible event. For every E, Ec is the
contrary of E. For any pair of events (E, H), with H 6= ;, like de Finetti's, the
conditional event E=H is a proposition that assumes the values: true, if EH is
verī ed, false is E cH is veri¯ed and undetermined if Hc holds.

Let H be a non impossible event.

De¯nition 1 A partition ¦ of H is a non empty family of non impossible
events, pairwise disjoint and such that their union is equal to H .

De¯nition 2 Let ¦1 and ¦2 be two partitions of H. The product ¦1 ± ¦2 is
the partition fAB : A 2 ¦1; B 2 ¦2; AB 6= ;g:

De¯nition 3 Let ¦ be a partition of H. We call "H-conditional random
function" with domain D(F ) = ¦ any function F : ¦ ! R: For any x 2
Im(¦), F ¡1(x) is the union of all the A 2 ¦ : F (A) = x: The partition, of H,
D¤(F ) = fF ¡1(x); x 2 Im(¦)g is called the reduced domain of F and the
H-conditional random function F ¤ : F¡1(x) 2 D¤(F ) ! x 2 R is the reduced
form of F .

If ¢ is another partition of H we call "re¯nement" of F with ¢ the H-
conditional random function G : ¦ ± ¢ ! R, noted r(F; ¢), such that:

(RF) 8A 2 ¦; B 2 ¢; AB 6= ; =) G(AB) = F (A):

We have the following:

Proposition 1 Let ©H be the set of all the H-conditional random functions.
The relation ½ such that, 8F1; F2 2 ©H , F1½F2 i® F1 and F2 have the same
reduced form is an equivalence relation.

If D(F1) = ¦, D(F2) = ¢ then F1½F2 () r(F1; ¢) = r(F2; ¦):
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De¯nition 4 A H-conditional random number X is an equivalence class
of ©H as to ½, that is an element of the quotient set QH = ©H=½. If F 2 X , we
write X = [F ] and F is said to be a representant of X . The domain of X is
the reduced domain D¤(F ) of the elements of X and the image of X , Im(X),
is the image of the elements of X . We denote with X¤ the reduced form of the
elements of X , called also reduced form of X .

De¯nition 5 Let F1, with domain ¦, and F2 with domain ¢, be two H-
conditional random functions. We write F1 · F2 i® r(F1;¢) · r(F2; ¦):

Proposition 2 Let X and Y be two H-conditional random numbers. If there
exist F1 2 X; F2 2 Y : F1 · F2, then for any G1 2 X; G2 2 Y we have G1 · G2,
and we write X · Y . The · is an order relation on QH :

De¯nition 6 A H-conditional random number X is said to be:
- constant or degenerate if Im(X) is a singleton fag, we write X = a;
- bounded or limited if Im(X) is bounded;
- ¯nite if Im(X) is ¯nite;
- H-event if Im(X) µ f0; 1g;
- fuzzy H-event if Im(X) µ [0; 1].

Usually, if there is not possibility of misinterpretations, a H -event X is
identī ed with the conditional event X¡1(1)=H .

If X is a bounded H-conditional random number, we put:
inf(X) = inf(Im(X)) and sup(X) = sup(Im(X)):

De¯nition 7 Let ¾ be an operation on R. The extension of ¾ to ©H , noted
also ¾, is the function

¾ : (F1; F2) 2 ©H £ ©H ! F1¾F2,
with F1¾F2 the H-conditional random function such that:

8A 2 D(F1); B 2 D(F2), AB 6= ;, (F1¾F2)(AB) = F1(A)¾F2(B):
The extension of ¾ to R £ ©H , noted ¾¤, is the function

¾¤ : (c; F ) 2 R £ ©H ! c¾¤F ,
with c¾¤F the H-conditional random function such that:

8A 2 D(F ); 8c 2 R; (c¾¤F )(A) = c¾F (A).

We have: 8F1; F2; G1; G2 2 ©H , (F1½G1; F2½G2) =) (F1¾F2)½(G1¾G2)
and, 8c 2 R; 8F; G 2 ©H , F ½G =) (c¾¤F )½(c¾¤G). Then, we can extend ¾ and
¾¤ respectively to QH and R£QH by putting 8F1;F2 2 ©H ; [F1]¾[F2] = [F1¾F2]
and 8c 2 R; 8F 2 ©H ; c¾¤[F ] = [c¾¤F ].

If we consider the usual addition + and multiplication ¢ on R; and we write
¤ for ¢¤; we have:

Proposition 3 (QH ; +; ¤) is a vector space on R. QH;L, set of bounded H-
conditional random numbers, and QH;F , set of ¯nite H-conditional random
numbers, are subspaces.
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(QH ;+; ¢) is a commutative ring with unity the random H-conditional num-
ber equal to 1, that is the conditional event H=H. QH;L and QH;F are subrings.

(QH ;+; ¢; ¤) is an algebra on R. QH;L and QH;F are subalgebras.

3 H-conditional prevision

In the sequel, to avoid undetermined forms, we consider only bounded H-
conditional random numbers. Many of results can be extended to the general
case.

Let H be a non impossible event.

De¯nition 8 Let SH be a set of bounded H-conditional random numbers. We
de¯ne H-conditional prevision on SH any function P : SH ! R such that:

(HCP1) 8a; b 2 R; 8X 2 SH ; a · X · b =) a · P (X) · b;
(HCP2) 8X; Y 2 SH ; X + Y 2 SH =) P (X + Y ) = P (X) + P (Y ):
We call "extension of P" any H-conditional prevision on a set S of bounded

H-conditional random numbers containing SH . We say that P is coherent if
there exists an extension of P to the vector space V (SH ) generated by SH :

Let SH be a set of bounded H-conditional random numbers and let P be
a H-conditional prevision on SH . By repeating, with little modi¯cations, for
the H-conditional random numbers the proofs of the analogous theorems on the
random numbers given in [1] or in [9], we can prove the following:

Proposition 4 We have:
(C1) H=H 2 SH =) P (H=H) = 1;
(C2) 8X 2 SH ; X ¸ 0 =) P (X) ¸ 0;
(C3) 8X; Y 2 SH ; X · Y; Y ¡ X 2 SH =) P (X) · P (Y ):

Proposition 5 If P is coherent then there exists a unique extension P ¤ of P
to V (SH ) and we have:

(HCP3) 8n 2 N; 8X1; X2; :::; Xn 2 SH ; 8c1; c2; :::; cn 2 R;
P ¤(c1X1 + c2X2 + ::: + cnXn) = c1P (X1) + c2P (X2) + ::: + cnP (Xn ):

Proposition 6 If P is coherent then we have:
(HCP4) 8n 2 N; 8X1; X2; :::;Xn 2 SH ; 8c1; c2; :::; cn ;c 2 R;
c1X1 + c2X2 + ::: + cnXn · c =) c1P (X1) + c2P (X2) + ::: + cnP (Xn ) · c;
(HCP5) 8n 2 N; 8X1; X2; :::;Xn 2 SH ; 8c1; c2; :::; cn ;c 2 R;
c1X1 + c2X2 + ::: + cnXn ¸ c =) c1P (X1) + c2P (X2) + ::: + cnP (Xn ) ¸ c;
(HCP6) 8n 2 N; 8X1; X2; :::;Xn 2 SH ; 8c1; c2; :::; cn ;c 2 R;
c1X1 + c2X2 + ::: + cnXn = c =) c1P (X1) + c2P (X2) + ::: + cnP (Xn ) = c;
(HCP7) 8n 2 N; 8X1; X2; :::;Xn 2 SH ; 8c1; c2; :::; cn 2 R;
sup[c1(X1 ¡ P (X1)) + c2(X2 ¡ P (X2)) + ::: + cn(Xn ¡ P (Xn ))] ¸ 0;
(HCP8) 8n 2 N; 8X1; X2; :::;Xn 2 SH ; 8c1; c2; :::; cn 2 R;
inf[c1(X1 ¡ P (X1)) + c2(X2 ¡ P (X2)) + ::: + cn(Xn ¡ P (Xn ))] · 0:
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Proposition 7 Let P : SH ¡! R. If at least one among (HCP4), (HCP5),
(HCP7) and (HCP8) holds, then P is a coherent H-conditional prevision.

4 Conditional prevision

4.1 Extensions of H-conditional random numbers

De¯nition 9 Let X be a H-conditional random number and let Y be a K-
conditional random number, with H µ K . We say that Y is a K -extension of
X or that X is equal to Y conditioned to H, we write X = Y=H, if:

(KE1) D(X) = fAH 6= ; : A 2 D(Y )g;
(KE2) 8A 2 D(Y ) : AH 6= ;; X(AH) = Y (A):

We denote with X " K the set of all the extensions of X to K.
We say that Y is a simple K-extension of X if:

(SE1) Y 2 X " K;

(SE2) 9A 2 D(Y ) : A ¶ K ¡ H:

If Y (A) = a we write Y = XK;a and we say that a is the value of the simple
K -extension Y of X .

We denote with XK the set of all the simple extensions of X to K . We
assume X = XH;a; 8a 2 R:

It is easy to prove the:

Proposition 8 We have:
(EP1) Y is a K-conditional random number() Y = Y =K ;

(EP2) Y = Y=K; ; 6= H µ K =) Y =H = Y H=H = (Y + aHc)=H; 8a 2 R;

(EP3) 8a; b 2 R; X = X=H; H ½ K =) XK;a = XK;b + (a ¡ b)H c=K;

(EP4) X = X=H =) X " H = X = XH;a ; 8a 2 R:

Let H and K be two non impossible events with H ½ K and let SH and SK

sets, respectively, of H-conditional and K-conditional random numbers.

De¯nition 10 We say that (SH ; SK) is closed as to the simple K-extensions
if:

(CSE1) H=H 2 SH , K=K 2 SK ;

(CSE2) 8a 2 R; 8X 2 SH , XK;a 2 SK :
We say that (SH ; SK) is semi-closed as to the simple K-extensions if

it satis¯es (CSE1) and

(CSE2W) 8X 2 SH , XK;0 2 SK .

Proposition 9 If (SH ; SK) is semi-closed as to the simple K -extensions then
(V (SH ); V (SK)) is closed as to the simple K -extensions.



192 A. MATURO

Proof. If X 2 V (SH ), there exist n 2 N; a1; a2; :::; an 2 R; X1; X2; :::; Xn 2 SH

such that X = a1X1+a2X2 +:::+anXn. Since (SH ; SK) is semi-closed as to the

simple K-extensions we have XK;0 = a1X
K;0
1 +a2X

K;0
2 + ::: +anXK;0

n 2 V (SK).
Moreover, H=K = (H=H)K;0 2 SK and so Hc=K = K=K ¡ H=K 2 V (SK):
Then, from (EP3), 8a 2 R; we have XK;a = XK;0 + aHc=K 2 V (SK )

De¯nition 11 Let PH and PK be, respectively, a H-conditional prevision on
SH and a K-conditional prevision on SK , with H ½ K, and such that (SH ; SK)
is closed as to the simple K -extensions. We say that (PH ;PK) has the property
of relative coherence if:

(RC) 8X 2 SH ; 9a 2 R : PK(XK;a) = PH (X) = a:

Remark 1 By an intuitive point of view, an element X of SH is interpreted as
the winnings of a player A in a lottery LH that occurs is H is veri¯ed, with stake
PH (X), and XK;a is the winning of A in a lottery LK occurring if K is veri¯ed,
with stake PK (XK;a). Let GH = X ¡ PH (X) and GK = XK;a ¡ PK(XK;a) be
the gains of A, respectively with LH and LK . If (RC) holds we have GH = GK

if H is veri¯ed and GK = 0 if K ¡ H occurs. If we assume that the gain null
is equivalent to not play, then the lotteries LH and LK are equivalent.

In general, if we assume only the condition PK(XK;a) = PH (X), we have
GH = GK if H is veri¯ed and there is no lottery if Kc holds. If K ¡ H occurs
we have GK = a ¡ PH (X) while the lottery LH is not played. In this case GK

may have many interpretations, e.g. as the interest for the anticipation of the
capital PH (X) if a > PH (X) or as the price for the activation of LK also when
K ¡ H occurs if a < PH (X).

In this paper we assume LH and LK are logically distinct also if (RC) holds.

In the sequel we assume H and K are non impossible events with H ½ K, SH

and SK are two sets, respectively, of H-conditional and K -conditional random
numbers, and PH and PK are, respectively, a H-conditional prevision on SH

and a K-conditional prevision on SK .We have:

Proposition 10 Suppose (SH ; SK) is closed as to the simple K-extensions and
PH and PK are coherent. If (PH ; PK) has the property of relative coherence,
P ¤

H is the extension of PH to V (SH ) and P ¤
K is the one of PK to V (SK ); then

also (P ¤
H ; P ¤

K ) has the property of relative coherence.

Proof. Let X be an element of V (SH ). Then there exist n 2 N; a1; a2; :::;an 2
R; X1; X2; :::; Xn 2 SH : X = a1X1 + a2X2 + ::: + anXn: Let I = f1; 2; :::; ng:
Since (PH ; PK) has the property of relative coherence, 8i 2 I there exists ci 2
R such that PH (Xi) = PK(XK;c

i ) = ci . Let Y =
P

i2I aiX
K;c
i and c =P

i2I aici : Since PH and PK are coherent we have P ¤
H (X) =

P
i2I aiPH (Xi) =P

i2I aiPK(X
K;c
i ) = P ¤

K(Y ) = c and Y = XK;c 2 V (SK):
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De¯nition 12 Suppose (SH ; SK) is semi-closed as to the simple K-extensions.
We say that (PH ; PK ) has the property of multiplicative coherence if:

(MC) 8X 2 SH ; PK (XK;0) = PH (X)PK (H=K).

If Z 2 SK \ X " K then XK;0 = ZH=K; X = Z=H and so we have:

Corollary 11 Suppose (SH ; SK) is semi-closed as to the simple K-extensions.
Then (PH ; PK ) has the property of multiplicative coherence if and only if:

(MCM) 8X 2 SH ; 8Z 2 SK\X " K, PK(ZH=K) = PH (Z=H)PK(H=K):

Proposition 12 Suppose that:
(1) (SH ; SK) is semi-closed as to the simple K-extensions;
(2) PH and PK are coherent;
(3) S¤

K is the union of SK and the set of all the simple K-extensions of the
elements of SH ;

(4) P ¤
K is an extension of PK to V (S¤

K ).
Then (PH ; P ¤

K ) has the property of relative coherence if and only if (PH ; PK )
has the property of multiplicative coherence.

Proof. Assume (PH ;P ¤
K) has the property of relative coherence. Then:

8X 2 SH ; 9a 2 R : P ¤
K(XK;a) = PH (X) = a:

From the coherence of P ¤
K and (EP3) we have:

P ¤
K(XK;a) = PK (XK;0)+aP ¤

K(Hc=K ) = a; with a = PH (X), P ¤
K(Hc=K ) =

1 ¡ PK(H=K ) and so (MC) follows.
On the converse, if (PH ; PK) has the property of multiplicative coherence,

we have (MC). If we put PH (X) = a, we have:
PK(XK;0) = a(1 ¡ P ¤

K(Hc=K)):
From (EP3) it is equivalent to P ¤

K(XK;a) = PH (X) = a and so (RC) holds.

4.2 Coherent conditional prevision

We say that X is a conditional random number if there exists a non im-
possible event H such that X is a H-conditional random number. By previous
theory we are induced to give the following:

De¯nition 13 Let T be a non empty family of non impossible events. We say
that S = [H2T SH is a regular family of conditional random numbers if:

(RF1) H1 2 T; H2 2 T =) H1 [ H2 2 T ;
(RF2) 8H 2 T , SH is a family of H-conditional random numbers such

that H=H 2 SH ;
(RF3) H 2 T; K 2 T; H ½ K =) (SH ; SK) is closed as to the simple

K -extensions.
We say that S is a semi-regular family of conditional random numbers if

it satis¯es (RF1), (RF2) and:
(RF3W) H 2 T; K 2 T; H ½ K =) (SH ; SK) is semi-closed as to the simple

K -extensions.
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De¯nition 14 Let S = [H 2T SH be a regular family of conditional random
numbers. We say that a function P : S ¡! R is a coherent conditional
prevision on S if:

(CCP1) 8H 2 T; the restriction PH of P to SH is a coherent H -conditional
prevision;

(CCP2) H 2 T; K 2 T; H ½ K =) (PH ; PK) has the property of relative
coherence.

De¯nition 15 Let S be any set of conditional random numbers. We say that
a function P : S ¡! R is a coherent conditional prevision on S if there
exists an extension P ¤ of P to a regular family of conditional random numbers
S¤ ¶ S such that P ¤ : S¤ ¡! R is a coherent conditional prevision on S¤.

By previous de¯nitions and proposition 12 we have:

Proposition 13 Let S = [H 2T SH be a semi-regular family of conditional ran-
dom numbers. We have that a function P : S ¡! R is a coherent conditional
prevision on S if:

(CCP1W) 8H 2 T; the restriction PH of P to SH is a coherent H-
conditional prevision;

(CCP2W) H 2 T; K 2 T; H ½ K =) (PH ; PK) has the property of
multiplicative coherence.

In the sequel, if H and K are events with 6= H µ K and X is a H-
conditional random number with prevision PH (X), we put:

XK;¤ = XK;a , with a = PH (X), for H ½ K, XK;¤ = X for H = K.
By de¯nition 13 and propositions 6 and 7 we have the following:

Proposition 14 Let T be a family of non impossible events and let S = [H2T SH

be a regular family of conditional random numbers.
A function P : S ¡! R is a coherent conditional prevision if and only if:
(NSC1) 8H; K 2 T; H µ K =) PK(XK;¤) = PH (X)
and at least one of the fol lowing properties holds:
(NSC2A) 8n 2 N; 8Xi = Xi=Hi 2 S; i 2 f1; 2; :::;ng; 8c1; c2; :::; cn; c 2

R;if K = [n
i=1Hi then

c1X
K;¤
1 + c2X

K;¤
2 + :::+cnXK;¤

n · c =) c1P (X1)+c2P (X2)+ :::+ cnP (Xn) · c;
(NSC2B) 8n 2 N; 8Xi = Xi=Hi 2 S; i 2 f1; 2; :::; ng; 8c1; c2; :::; cn; c 2

R;if K = [n
i=1Hi then

c1X
K;¤
1 + c2X

K;¤
2 + :::+cnXK;¤

n ¸ c =) c1P (X1)+c2P (X2)+ :::+ cnP (Xn) ¸ c;
(NSC2C) 8n 2 N; 8Xi = Xi=Hi 2 S; i 2 f1; 2; :::; ng; 8c1;c2; :::; cn 2 R;if

K = [n
i=1Hi then

sup[c1(X
K;¤
1 ¡ P (X1)) + c2(X

K;¤
2 ¡ P (X2)) + ::: + cn(XK;¤

n ¡ P (Xn))] ¸ 0;
(NSC2D) 8n 2 N; 8Xi = Xi=Hi 2 S; i 2 f1; 2; :::; ng; 8c1; c2; :::; cn 2 R;if

K = [n
i=1Hi then

inf[c1(X
K;¤
1 ¡ P (X1)) + c2(X

K;¤
2 ¡ P (X2)) + ::: + cn(XK;¤

n ¡ P (Xn))] · 0:
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5 Assessment of coherent conditional previsions

Let F = fXi = Xi=Hi ; i 2 I = f1; 2; :::; mgg be a ¯nite set of ¯nite conditional
random numbers and let K = [i2IHi . Denote by D¤

i the set D(Xi) if Hi = K
and the set D(Xi)[ fK ¡ Hig if Hi ½ K . The product D = D¤

1 ± D¤
2 ± :::± D¤

m is
a partition of K and, 8i 2 I , any simple K-extension of Xi belongs to V (D=K),
vector space generated by the set fA=K, A 2 Dg.

Let D = fAj; j 2 Jg and, 8i 2 I; j 2 J; ±ij = 0 if Aj Hi and ±ij = 1 if
Aj µ Hi. There exist real numbers aij, i 2 I; j 2 J, such that:

(E1) XK;0
i =

P
j2J aijAj=K; (E2) Hi=K =

P
j2J ±ijAj=K .

Let T be the set of the ¯nite unions of the elements Hi , i 2 I . By (E1) and
(E2) we have also, 8H 2 T : Hi µ H ,

(E3) X
H;0
i =

P
j2J aijAj=H ; (E4) Hi=H =

P
j2J ±ijAj=H .

For any H 2 T , we put SH = fX
H;0
i : Hi µ H g [ fAj=H; j 2 Jg [ fH 0=H :

H 0 2 T; H 0 µ Hg [ f;=Hg. Since H ½ H 0 =) (Aj=H )H ;0 2 f;=H 0; Aj=H 0g we
have that S = [H 2T SH is a semi-regular family of conditional random numbers.
If P is a coherent conditional prevision on S, then the restriction PH of P to
SH satis¯es the conditions:

(CCP1) PH (X
H;0
i ) =

P
j2J aijPH (Aj=H), 8i 2 I : Hi µ H 2 T ;

(CCP2)
P

j2J PH (Aj=H) = 1, PH (Aj=H) ¸ 0, 8j 2 J.
The conditions (CCP2) are also su±cient to assure the coherence of the

restriction of PH to the conditional random numbers Aj=H and so the existence
of the numbers aij satisfying (CCP1) with the conditions (CCP2) is necessary
and su±cient for the coherence of PH .

Then, by proposition 13, the coherence conditions on P are:
(CCA) P (Xi)P (Hi=H) =

P
j2J aijP (Aj=H); 8i 2 I : Hi µ H 2 T ;

(CCB) P (Hi=H) =
P

j2J ±ijP (Aj=H ); 8H ¶ Hi; H 2 T ;

(CCC)
P

j2J P (Aj=H) = 1, P (Aj=H) ¸ 0, 8j 2 J .
(CCD) 8j 2 J; 8H; H 0 2 T : H ¶ H 0 ¶ Aj ; P (Aj=H

0)P (H 0=H) = P (Aj=H):

8 i 2 I; we put Ki = maxfH 2 T : Hi µ H; P (Hi=H) > 0g. We can prove
the:

Proposition 15 The set fKi; i 2 Ig is totally ordered as to the inclusion with
maximum K and if the conditions (CCA), (CCB), (CCC) and (CCD) hold for
H = Ki then, 8i 2 I, they are valid also 8H : Hi µ H µ Ki :

By previous considerations and proposition 15 we deduce an algorithm to
verify the coherence of an assessment of values P (Xi); i 2 I that extends to the
conditional random numbers the one considered in [2] for conditional probabil-
ities.

Suppose we assign the values P (Xi); i 2 I. If such assessment is coherent,
by considering H = K and the zK

j = PK(Aj=K) as unknowns, the equations
(CCA), (CCB) with the conditions (CCC) must have solutions.
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If ZK = (zK
j ; j 2 J) is a solution, for any i 2 I we can have two cases:

(a) P (Hi=K) > 0, (b) P (Hi=K) = 0:
Let I¤ = fi 2 I : P (Hi=K) > 0g. By (CCC) I¤ 6= ; and, 8i 2 I¤; H 2 T :

Aj µ H , we put P (Aj=H) = P (Aj=K)=P (H=K ) with P (H=K) =
P

A µH P (Aj=K).
By proposition 15 we have that all the coherence conditions (CCA), (CCB),
(CCC) and (CCD) are satis¯ed for any i 2 I¤.

For the Xi such that (b) holds, (CCA) and (CCB) are undetermined and
we cannot apply proposition 15. We put F 1 = fXi 2 F : P (H i=K) = 0g and
K1 = [fHi : Xi 2 F 1g:

To verify the coherence of the assessment of the P (Xi); Xi 2 F 1 we must
reiterate the previous algorithm by replacing F with F 1 and K with K 1:

By (CCC) it follows that the algorithm, since F is ¯nite, has a ¯nite number
of steps and so it permits to conclude if the assessment of the P (Xi); i 2 I; is
coherent or not.

6 New results and applications

6.1 General coherence conditions by a fuzzy partition

De¯nition 16 Let Zj = Zj=K, j 2 J = f1; 2; :::; ng be fuzzy K -events such
that 1 2 Im(Zi); 8j 2 J . We say that the set fZj; j 2 Jg is a fuzzy partition
of K/K if:

(FP1)
P

j2J Zj=K = K=K:

Proposition 16 Let ¦ = fZj = Zj=K; j 2 J = f1; 2; :::;ngg be a fuzzy parti-
tion of K=K. A function P : ¦ ¡! R is a coherent K-conditional prevision on
¦ if and only if

(C1)
P

j2J P (Zj ) = 1, (C2) 8j 2 J; P (Zj) ¸ 0:

Proof. It is su±cient to prove that, 8j 2 J; 8cj 2 R:
(a) inf

P
j2J cj [Zj ¡ P (Zj)] · 0 or (b) sup

P
j2J cj[Zj ¡ P (Zj )] ¸ 0:

Without loss of generality, we can suppose c1 ¸ 0 and c1 ¸ maxfjcjj; j 2 Jg.
If we put Z1 = 1, by (C1) and (C2) we have:P

j2J cj [Zj ¡ P (Zj )] = c1 ¡
P

j2J cjP (Zj ) ¸ 0
and so (b) holds.

Let F = fXi = Xi=Hi ; i 2 I = f1; 2; :::; mgg a ¯nite set of conditional

random numbers and let K = [i2IHi. If any X
K;0
i and any Hi=K is linearly

dependent on the Zj, then there exist real numbers aij and bij such that:

(F1) X
K;0
i =

P
j2J aijZj; (F2) Hi=K =

P
j2J bijZj :

If PK is a coherent K-conditional prevision on the set fX
K;0
i ; Hi=K; i 2

Ig [ fZj ; j 2 Jg then we have:

(FCCP1) PK(XK;0
i ) =

P
j2J aijPK (Zj);8i 2 I;

(FCCP2) PK(Hi=K) =
P

j2J bijPK(Zj); 8i 2 I;
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with the conditions (C1) and (C2).

If P : F ! R is a real function, we can have the conditions for P is a
coherent conditional prevision on F by considerations analogous to the ones of
the previous paragraph, by replacing Aj=K with Zj and ±ij with bij ,and with
some other suitable modi¯cations.

6.2 Applications to the Decision Theory

In Decision Theory under Uncertainty (see e.g. [7]) a decision maker must
choose among a set A = (A1; A2; :::; Am) of acts but the relative desirability of
each act depend upon which "state of nature", in a set S = (S1;S2; :::;Sn), is
veri¯ed. The desirability is measured by an utility function u : A £ S ¡! R
that to any (Ai ; Sj ) associates a real number uij that is the utility of the act Ai

if the state of nature Sj prevails. The states of nature are events that form a
partition of the certain event and any act is a random number with domain S.
There are two extreme possibilities: the complete knowledge of the probabilities
a priori of the states of nature, in this case we say that we have a decision under
risk, and the complete ignorance of such probabilities. In the ¯rst case the best
decision criterion is the choice of the act with maximum utility prevision and in
the second case the choice of the act that maximizes the minimum payo®.

A generalization of the classical model is to consider as states of nature the
elements of a set Sj = Sj=K of K-conditional random numbers. In this case we
have that any act Ai is also a K-conditional random number and a fundamental
importance has the choice of a coherent assessment of a K-conditional prevision
on the set A [ S.

Particular interesting situation is the one in which S is a fuzzy partition of
the certain event, or, in general, of the conditional event K=K.

6.3 Algebraic properties of extensions of conditional ran-
dom numbers

We assume the fundamental de¯nitions on the hyperstructures given in [8].

Let S be a set of conditional random numbers such that:
(CAE) 8X = X=H1; Y = Y=H2 2 S; (X " (H1[ H2))[(Y " (H1[ H2)) µ S:

We can consider the hyperoperation ± on S such that:
8X = X=H1; Y = Y =H2 2 S; X ± Y = (X " (H1 [ H2)) [ (Y " (H1 [ H2)).

It is easy to prove the:

Proposition 17 (S; ±) has the fol lowing properties.
(HA1) 8X 2 S; X ± X = X ; (± is idempotent)
(HA2) 8X; Y 2 S; X ± Y = Y ± X ; (commutativity)

(HA3) 8X; Y; Z 2 S; (X ± Y ) ± Z = X ± (Y ± Z): (associativity)
Then (S; ±) is an idempotent and commutative semihypergroup.
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Remark 2 (S; ±) is not a hypergroup because there exists Z 2 S : X ± Z = Y ,
with X = X=H1; Y = Y=H2 if and only H1 µ H2:

We can consider also the hyperoperation ¤ on S such that:
8X = X=H1;Y = Y=H2 2 S; X ¤ Y = XH1[H2 [ Y H1[H2 :
We can prove the:

Proposition 18 (S; ¤) has the following properties.
(HB1) 8X 2 S; X ¤ X = X ;
(HB2) 8X; Y 2 S; X ¤ Y = Y ¤ X ;
(HB3) 8X; Y; Z 2 S; (X ¤ Y ) ¤ Z \ X ¤ (Y ¤ Z) 6= ;: (weak associativity)
Then (S; ¤) is a commutative and weak associative hypergroupoid.

Remark 3 Like to the hyperstructure (S; ±), there exists Z 2 S : X ¤ Z = Y ,
with X = X=H1; Y = Y=H2 if and only H1 µ H2: Unlike (S; ±), (S; ¤) has not
the associative property because, if X = X=H1 and H1 ½ H2 ½ H3 a simple
extension to H3 of a simple extension of X to H2 is not, in general, a simple
extension of X to H3:
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