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Random Rasch matrices

Rasch model (1960):

Problem i attempted by person j. There are ‘easinesses’
a = (a;)i=1,.. and ‘abilities’ 5 = (8;);=1,... so that binary
responses X;; are conditionally independent given (¢, )
and

_ayf;

P(Xij=1la,f)=1-P(X;; =0]a,B) = 1+ oif
iP5

A random Rasch matrix has («;) i.i.d. with distribution A

and (g;) i.i.d. B.

Also potential model for hit of batter i against pitcher j,
occurrence of species i on island j, etc.



Example of random Rasch matrix




Exchangeable sequences
Xq,...,X,,,...is exchangeable if for all n
)(Vl,...,)(n2 7r(1)a---7X7r(n) for aIIWES(n).

For example:

p(1,1,0,0,0,1,1,0) = p(1,0,1,0,1,0,0,1).

If X1,...,X,,... are independent and identically
distributed, they are exchangeable, but not conversely.



de Finetti’s Theorem

de Finetti (1931) shows that all exchangeable sequences are
mixtures of Bernoulli sequences:

A binary sequence X1, ...,X,,... is exchangeable if and

only if there exists a distribution function F' on [0, 1] such
that for all n

1
par,.coan) = [ 600 dF(6),
0

where p(z1,...,2,) = P(Xj = 21,...,X, = 2,) and
tn :Z?:I Z;.



More about de Finetti’s Theorem

It further holds that F' is the distribution function of the
limiting frequency:

Y = lim ZXi/n, P(Y <y)=F(y)

n—oo

and the Bernoulli distribution is obtained by conditioning
with Y = 6:

PXi=z1,..., Xpn=2,|Y =0) =60"(1 — )" n.



Exchangeability and sufficiency
For binary variables, X1, ..., X,, ... is exchangeable if and
only if for all n

P(Xh =21, .., X = Zp) = 0n (O, T:).
Because S(n) acts transitively on binary n-vectors with

fixed sum, i.e. if  and y are two such vectors, there is a
permutation which sends z into .

So exchangeability is equivalent to t, =), x; being

sufficient and
n\ !
(T, Ty | ) = ( ) .
tn



Summarizing statistics

We say that t(z) is summarizing for p if p(x) = ¢(t(x)) for
some .

Note that if ¢(x) is summarizing, it is sufficient and

p(z | t) is uniform on {x : t(x) =t}

So exchangeability is equivalent to t,, = > . x; summarizing
the probability.

Often t(x) takes values in an Abelian semigroup, generally
leading to mixture representation of all distributions
summarized by ¢ in terms of the characters of the
semigroup, i.e. functions satisfying p(s + t) = p(s)p(t).



Row- and column-exchangeable matrices

0,00

A doubly infinite matrix X = {X;;}77" is said to be

o row—column exchangeable (RCE-matrix) if for all
m,n, T € S(m),p € S(n)

{le}ll _{Xfr(z j)}l

o weakly exchangeable (WE-matrix) if for all n and
m e S(n)

n,n D
{XZJ 1,1 _{XW(z ])}



Summarized matrices

A doubly infinite (binary) matrix X = {X;;}7™ is said to

be row-column summarized (RCS-matrix) if for all m,n

({xZ]}m n) ¢m,n{R1;-~-’Rm;C1;-~-,Cn}7

where R; = Zj z;; and C; = Zj x;; are the row- and
column sums.

Note that, in contrast to the case of binary sequences,
RCE-matrices are generally not RCS-matrices and vice
versa.

If a matrix is both RCE and RCS, it is an RCES-matrix.



RCE versus RCS

Group Gro of row and column permutations does not act
transitively on matrices with fixed row- and column sums:

1 0 0 01 0
Mi={ 0 0 1%, M={0 01
0 1 1 1 0 1
0 0 1 0 1
Ms=1{ 1 0%, Ma=<¢ 0 1 0
01 1 1 1

0 0 1

Ms={ 0 0 1

1 1 0

|d€t Afﬂ = \det ]sz‘ = \det Mg‘ = \det M4| = 1, det :\[3 = (0,




RCE versus RCE and RCS (RCES)




RCE versus RCES




Weakly summarized matrices

A doubly infinite (binary) matrix X = {X;;}75™ is weakly
summarized (WS-matrix) if for all n

p({xl_]}?:in) - ¢7‘L{R1 + C\117 MR R’I’L + C’I’L})

where R; = Zj z;; and C; = Zj x;; are the row- and
column sums as before.

Also here WE-matrices are generally not WS-matrices and
vice versa.

If a matrix is both WE and WS, it is an WES-matrix.

If in addition, {X;; = X;;}, i.e. the matrix is symmetric we
may consider SWE, SWS, SWES matrices, etc.



(S)WE versus (S)WS

01 1 0 0 0
1 01 0 0 0
1 1.0 0 0 0
Ms=40 000 1 1
000 1 0 1
00 0 1 1 0
01 00 0 1
1 01 0 0 0
. )Jo 10100
Mi=§ 090101 0
000 1 0 1
1 00 0 1 O

No joint permutation of rows and columns take Mg into
M7Z



Mg is adjacency matrix of two triangles and M7 adjacency
matrix of 6-cycle.



Convexity formulation

The set of distributions Prc g is a convex simplex.

In particular, every P € Prcpr has a unique representation
as a mixture of extreme points Ercg, i.€.

P(A) = /E QAP (Q).

The same holds if RCE is replaced by RCS, RCES, WE,
SWE, SWES, etc. In addition, it can be shown that

Erces = Erce N Pres, Ewes = Ewe N Pws,

etc.



Features of extreme measures

Aldous (1978,1981): for any P € Prcp the following are
equivalent:

o Pc ERCE
o The tail o-field T is trivial

e The corresponding RCE-matrix X is dissociated.

Here the tail T is T = (.-, 0{X;;, min(¢,5) > n} and a
matrix is dissociated if for all Ay, As, B1, Bs with
AiNAy; =B NBy=10

{Xij}iea, jeB, L{Xij}tica, jeB,-



Random bipartite graphs

A binary matrix X defines a random graph in several ways.

If we consider the rows and colums as labels of two
different sets of vertices, a random bipartite graph can be
defined from X by letting X;; = 1 if and only if there is a
directed edge from i to j.

An RCE-matrix then corresponds to a random graph with
exhangeable labels within each partition of the graph
vertices.

An RCS-matrix is similarly one where any two graphs
having the same in-degree and out-degree for every vertex
are equally likely.



Exchangeable random graphs

If we consider the row-and column numbers to label the
same vertex set, the matrix X represents in a similar way a
random graph.

The graph is in general directed, but if we further restrict
the matrix X to be symmetric, X can represent a random
undirected graph.

A WE-matrix now represents a random graph with
exchangeable labels, and an SWE-matrix similarly an
undirected random exchangeable graph.

An SWS-matrix represents a random graph with the
probability of any graph only depending on its vertex
degrees.



de Finetti for RCE matrices

A binary doubly infinite random matrix X is a ¢-matrix if
X,; are independent given U = (U;);=1,... and

V = (V;),=1,... where U; and V; are independent and
uniform on (0,1) and

P(X” :1|UZU,V:U) :qﬁ(ui,vj),

Aldous (1981), Diaconis and Freedman (1981) show that
distributions of ¢-matrices are the extreme points of Prcs,
i.e. binary RCE matrices are mixtures of ¢-matrices.

Many ¢ give same distribution of ¢-matrix.



RCE versus RCS
Consider ¢-matrix defined by ¢(u;,v;) = w;v;. Then
P(M;) = P(My) = P(My) = P(My) = — 22 _
2985984
whereas P(M5) = 1/4096. (665 x 4096 = 2723840)
RCE matrices have no simple summarizing statistics

whereas RCES-matrices are summarized by the empirical
distributions of row- and column sums:

tmn = (27;1 Or; 2?21 653) ’

This is indeed a semigroup statistic, so RCES matrices can
be represented as mixtures of characters on the image
semigroup.



Rasch type ¢-matrices

If a ¢-matrix is RC'S it must satisfy

P({o VHEv) =2 ({3 0 }uv)

This holds if ¢ is of Rasch type, i.e. if for all u, v, u*, v*:

P(u, v)p(u, v")p(u”, v)P(u”, v*) =

¢(u, v)p(u, v*)p(u", v)(u*, v*),
where we have let ¢ = 1 — ¢. Above is Rasch functional
equation.

General solutions of this equation represent characters of
the image semigroup of the empirical row- and column sum
measures.



de Finetti for RCES

Any RCES matrix is a mixture of Rasch type ¢-matrices.

A random binary matrix is regular if
0<P(X;; =1|8) <1 forall i,j,

where the shell o-algebra S is
S = ﬂ o{X;;, max(i, j) > n}.

Any regular RCES matrix is a mixture of random Rasch
matrices.



Solutions to Rasch functional equation

Regular solutions (0 < ¢ < 1) all of form

a(u)b(v)

o) = T b

leading to random Rasch models.

Regular random Rasch matrices are parametrized by
distributions (A, B) of a(U) and b(V'), up to multiplication
of a and division of b with constant.

(4,B) ~ (A, B) <= A'(z) = A(cz), B'(y) = B(y/c)

for some ¢ > 0.



Non-regular solutions to Rasch equation

There are other interesting solutions, e.g.

1 ifu<w
0 otherwise.

¢(U7U) = X{u<gv} = {

or
a(u)b(v) :
———— if1 2
$(u,0) = 4 T+ a(w)b(o) if 1/3 < w,v<2/3
X{u<ul otherwise

corresponding to incomparable groups.



Non-regular Rasch with sorted rows and
columns

(ZS(U, 1)) = X{u<v}



Non-regular RCE with sorted rows and
columns

(U, v) = X{ju—v|<1/2}



RCE vs Rasch with sorted rows and columns




Cantor—Rasch matrices

Rasch model prevails between comparable groups,
determinism between incomparable ones: Keep cutting out
middle thirds of the unit interval to get

a(ub(v) .
ity rin<uo<on
p(u,v) = W if1/3 <uv<2/3
Tra(up() | 0S8
X{u<v} otherwise

and so on.

General results of Ressel imply that the limit will
correspond to a ¢-matrix.



de Finetti for WE matrices

A binary doubly infinite random matrix X is a ¥-matrix if
Xy are all independent given U = (U;)i=1,... where U;
are mutually independent and uniform on (0, 1) and

P(Xgi1) = (,2) |U =4,V = v) = 1y, (us, u5).
Here we have let Xy; ;1 = (X5, Xj;) for i < j.

Reformulating results in Aldous (1981) yield that binary
WE matrices are mixtures of 1h-matrices.

Note that we may further impose full symmetry by
restricting to v, = 0 unless y = z and distributional
symmetry by assuming v, = 1., or, equivalently,

wyz (u, 'U) = '(/}yz (’U’ U’)



Regular SWES matrices

Exactly as before, it is easy to show that

Eswes = Eswr N Psws, implying that SWES matrices
are mixtures of i)-matrices where ) satisfies the Rasch
functional equation.

Hence regular SWES 1)-matrices are generated as

a(u)a(v)

Y = T aw)ato)

Probably no interesting non-regular solutions?



Social network analysis

Random graphs with exchangeability properties form
natural models for social networks.

Frank and Strauss (1986) consider Markov graphs which
are random graphs with

X gy AL Xy | X B\ (3,53 40013 (1)

whenever all indices i, j, k, [l are different. Here E denotes
the edges in the complete graph on {1,...,n}.

They show that weakly exchangeable Markov graphs all
have the form

P}t o xplmat(e) + Y buiri(2))



where = {z;}]"]", t(z) is the number of triangles in z,
and vi(z) is the number of vertices in 2 of degree k.

Such Markov graphs are SWE, but generally not extendable
as such.

They are SWES if 7 = 0, and not otherwise if n > 5.

Note that -matrices typically differ from Markov graphs in
that they are dissociated, hence marginally rather than
conditionally independent:

Xgigy AL Xiw,1y (2)
whenever all indices i, j, k, [ are different.

In fact infinite weakly exchangeable Markov graphs are
Bernoulli graphs, essentially because the conjunction of (1)
and (2) implies complete independence.



Exchangeable random graphs

Problem: characterize exchangeable random graphs of the
form

p({zi iy Z Ori () })
or similar graphs with sufficient statistics being counts of
specific types of subgraph.

Rasch-type graphs, i.e. regular SWES-matrices, are as
above, but without triangles.



Limiting behaviour of RCES matrices

Second half of de Finetti’s Theorem relates parameter to
limiting frequency behaviour. For RCES-matrices we have a
clear analogue:

Let (F,,, Gy) denote the pair of empirical distributions of
the row- and column- averages X, = R;/n, X, ; = C;/m.

Consistency demands (F,, G,) to be a subconjugate pair,
i.e. that F},, < G}, where

F<G*<:>/ dx</G* ) dz for all s € [0,1],

where

G (z)=1-G11 - x).



Note that in fact /' < (* — G < I~

Since (F),, Gy,) are both distributions on the unit interval,
it easily follows that any RCES-matrix has an a.s. limit:

lim (En,Gn) = (F,G).

m,n— oo

For ¢-matrices this limit is a degenerate random variable
and plays the role of @ in the standard deFinetti’'s theorem.

Clearly, also (F,G) must then be subconjugate pairs.

Note that the pair (F,G) plays the role of 6 in the standard
deFinetti theorem, being the limiting value of the sufficient
statistic.



Marginal problem

If we consider models for batters vs. pitchers, F' may
determine the distribution of the batting average of a
random batter U and G the average result of a random
pitcher V.

With the probability of a hit when this batter meets this
pitcher defined by Y = v(U, V), consistency implies that

E(Y|U)=U, E{Y|V)=V.

Using results of Guttmann et al. (1991), it can be shown
(Lauritzen 2003) that such a function -y exists if and only if
(F, Q) is a subconjugate pair.



A conjecture concerning random Rasch
matrices

Conjecture: Let (F,G) be pair of cdfs on [0, 1]. Then
there is a Rasch ¢p-matrix with limits of marginal averages
having distributions F' and G if and only if FF < G*.

Distributions of ¢-matrices are injectively parametrized by
(F, Q).

The ¢-matrix is regular if and only if F' < G*.
True if (F,G) are discrete with support on rational points!

A different formulation of the conjecture says that the
extreme points Ercps can be identified with the set of
subconjugate pairs (F,G).



Summary

RCES matrices are mixtures of ¢-matrices of Rasch
type

Regular RCES matrices are mixtures of random Rasch
matrices

Non-regular RCES matrices can be natural and
interesting

RCE, RCES, WE and SWE, matrices produce
possibly interesting random graphs.

Rasch type ¢-matrices are (probably) parametrized by
subconjugate pairs (F, G) of distributions of limiting
marginal averages. Regular by strictly subconjugate.



