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Here is a framework for judgment in terms of a continuum of “sub-
jective” probabilities, a framework in which probabilistic judgments
need not stand on a foundation of certainties. In place of proposi-
tional data bases, this “radical” probabilism (“probabilities all the
way down to the roots”) envisages full or partial probability assign-
ments to probability spaces, together with protocols for revising those
assignments and their interconnections in the light of fresh empirical
or logico-mathematical input. This input need not be of the limiting 0-
or-1 sort. Updating by ordinary conditioning is generalized (sec. 2.2)
to probability kinematics, where an observation on a random variable
X need not single out one value, but may prompt a new probability
distribution over all values of X.

The effect of an observation itself, apart from the influence of prior
probabilities (sec. 3), is given by the (“Bayes”) factors new odds

old odds by
which the observer’s odds between hypotheses are updated. We are
not generally interested in adopting an observer’s new odds as our
own, for those are influenced by the observer’s old odds, not ours. It
is rather the observer’s Bayes’s factors that we need in order to use
that observation in our own judgments. An account of collaborative
updating is presented in these terms.

Jon Dorling’s bayesian solution of the Duhem-Quine “holism” prob-
lem is sketched in sec. 4.

We finish with a brief look at the historical setting of radical prob-
abilism (sec. 5), and an indication of how “real” probabilities can be
accomodated in subjectivistic terms (sec. 6).
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1 Judgmental (“Subjective”) Probability

Your “subjective” probability is not something fetched out of the sky
on a whim; it is your actual judgment, normally representing what
you think your judgment should be, even if you do not regard it as
a judgment that everyone must share on pain of being wrong in one
sense or another.

1.1 Probabilities from statistics: Minimalism

Where do probabilistic judgments come from? Statistical data are a
prime source; that is the truth in frequentism. But that truth must be
understood in the light of certain features of judgmental probabilizing,
e.g., persistence, as you learn the relative frequency of truths in a
sequence of propositions, of your judgment that they all have the same
probability. That is an application of the following theorem of the
probability calculus.1

Law of Little Numbers. In a finite sequence of propo-
sitions that you view as equiprobable, if you are sure that
the relative frequency of truths is p, then your probability
for each is p.

Then if, judging a sequence of propositions to be equiprobable, you
learn the relative frequency of truths in a way that does not change
your judgment of equiprobability, your probability for each proposition
will agree with the relative frequency.2

The law of little numbers can be generalized to random variables:

Law of Short Run Averages. In a finite sequence of
random variables for which your expections are equal, if

1See Jeffrey (1992) pp. 59-64. The name “Law of Little Numbers” is a joke,
but I know of no generally understood name for the theorem. That theorem, like
the next (the “Law of Short Run Averages”, another joke) is quite trivial; both are
immediate consequences of the linearity of the expectation operator. Chapter 2 of
de Fineti (1937) is devoted to them. In chapter 3 he goes on to a mathematically
deeper way of understanding the truth in frequentism, in terms of “exchangeability”
of random variables (sec. 1.2, below).

2To appreciate the importance of the italicized caveat, note that if you learn the
relative frequency of truths by learning which propositions in the sequence are true,
and which false, then those probabilities will be zeros and ones instead of averages
of those zeros and ones.
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you know only their arithmetical mean, then that is your
expectation of each.

Then if, while requiring your final expectations for a sequence of mag-
nitudes to be equal, you learn their mean value in a way that does
not lead you to change that requirement, your expectation of each will
agree with that mean.3

Example: Guessing Weight. Needing to estimate the weight of some-
one on the other side of a chain link fence, you select ten people on
your side whom you estimate to have the same weight as that eleventh,
persuade them to congregate on a platform scale, and read their total
weight. If the scale reads 1080 lb., your estimate of the eleventh per-
son’s weight will be 108 lb.—if nothing in that process has made you
revise your judgment that the eleven weights are equal.4

This is a frequentism in which judgmental probabilities are seen
as judgmental expectations of frequencies, and in which the Law of
Little Numbers guides the recycling of observed frequencies as proba-
bilities of unobserved instances. It is to be distinguished both from the
intelligible but untenable finite frequentism that simply identifies prob-
abilities with actual frequencies (generally, unknown) when there are
only finitely many instances overall, and from the unintellible long–run
frequentism that would see the observed instances as a finite fragment
of an infinite sequence in which the infinitely long run inflates expec-
tations into certainties that sweep judgmental probabilities under the
endless carpet.5

1.2 Probabilities from statistics: Exchangeability6

On the hypotheses of (a) equiprobability and (b) certainty that the
relative frequency of truths is r, the the Law of Little Numbers identi-

3If you learn the individual values and calculate the mean as their average with-
out forgetting the various values, you have violated the caveat (unless it happens
that all the values were the same), for what you learned will have shown you that
they are not equal.

4Note that turning statistics into probabilities or expectations in this way re-
quires neither conditioning nor Bayes’s theorem, nor does it require you to have
formed particular judgmental probabilities for the propositions or particular esti-
mates for the random variables prior to learning the relative frequency or mean.

5See Jeffrey (1992) chapter 11.
6See chapters 3 and 5 of Finetti (1937), (1980).
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fied the probability as r. Stronger conclusions follow from the stronger
hypothesis of

exchangeability: You regard propositions H1, . . . , Hn

as exchangeable when, for any particular t of them, your
probability that they are all true and the other f = n − t
false depends only on the numbers t and f .7

Here, again, as in sec. 1.1, probabilities will be seen to come from
statistics—but, again, only under probabilistic hypotheses.

In the presence of exchangeability of H1, . . . Hn, your probabilities
for all 2(2n) of their Boolean compounds are determined by your prob-
abilities for the following n + 1 of those compounds:

Hn
t =df t is the number of truths among H1, . . . , Hn.

We can now state the following theorem.8

de Finetti’s Rule of Succession. If you see H1, . . . , Hn, Hn+1 as
exchangeable, your probability for truth of Hn+1 given a conjunction
K of a particular t of H1, . . . , Hn with the denials of the rest will be

P (Hn+1|K) =
t + 1

n + 2 + ∗ , where ∗ = (n− t + 1)[
P (Hn+1

t )
P (Hn+1

t+1 )
− 1].

Example: The uniform distribution, P (Hn+1
t ) = 1/(n + 2).

In this (“Bayes-Laplace-Johnson-Carnap”) case P (Hn+1
t ) = P (Hn+1

t+1 ),

so that ∗ = 0 and de Finetti’s rule says: P (Hn+1|K) =
t + 1
n + 2

.

2 Updating on your own Observations

In this section we determine the conditions of applicability of certain
maps P �→ Q that update your prior probability function P to a
posterior probability function Q. The maps are:

A,1�−→, Conditioning on a data proposition A for which Q(A) = 1, and
�A,�q�−→, Generalized Conditioning (or “Probability Kinematics”) on a

partition A1, . . . , An on which you have new probabilities Q(Ai) = qi.
7This comes to the same thing as invariance of your probabilities for Boolean

compounds of finite numbers of the Hi under all finite permutations of the positive
integers, e.g., P (H1 ∧ (H2 ∨ ¬H3)) = P (H100 ∧ (H2 ∨ ¬H7)).

8de Finett, ‘Foresight’, pp. 104-5. The best thing to read on this is Zabell
(1989).

4



The discussion addresses “you,” a medical oncologist who is also a
histo-pathologist. The Ai are diagnoses, whose probabilities have been
driven to new values qi by your observations. The Bs are prognoses,
“s-year survival”. Your problem is to determine your new probabilities
for them.

On the basis of a microscopic examination of cells wiped from your
patient’s bronchial tumor you have updated your probabilities on a set
of mutually exclusive, collectively exhaustive diagnoses Ai:

A1,Benign; A2,Non-small call ca.; A3,Small cell ca.

How are you to extend the map P (Ai) �→ Q(Ai) on the diagnoses to a
map P (Bs) �→ Q(Bs) on the prognoses? There is no general answer,

but there are answers in the two special cases defined above:
A,1�−→ and

�A,�q�−→.

2.1 A special case: Conditioning

Suppose an observation drives your probability for some diagnosis (say,
A2) all the way to 1:

Q(A2) = 1, Certainty.

Question. When is it appropriate to update by conditioning on A2?

P (Bs) �→ Q(Bs) = P (Bs|A2), Conditioning.

Answer. When the change P (A2) �→ Q(A2) = 1 leaves conditional
probability given truth of A2 invariant:9

Q(Bs|A2) = P (Bs|A2), Invariance.

The invariance condition is equivalent to uniformity of expansion within
A2, i.e., constancy of odds between propositions that imply A2:

P (C)
P (D)

=
Q(C)
Q(D)

if C and D each imply A2, Uniformity.

Certainty alone is not enough to license conditioning, for one obser-
vation will generally yield many new certainties, on which conditioning
would lead to different updated probability functions.

9It is easy to verify that conditioning is equivalent to invariance together with
certainty.
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Example. Drawing a card from a well-shuffled deck, you see that it
is a heart. Conditioning on that certainty, P (Queen of hearts|heart) =
1
13 . Now in seeing that the card was a heart you also saw that it was
red; but conditioning on that certainty would have yielded a different
value, P (Queen of hearts|red) = 1

26 , which does not represent your
post-observation judgmental state.10

2.2 A less special case: Probability Kinematics

Suppose an observation changes your probability distribution over a
partition of diagnoses A1, . . . , An, without necessarily changing any of
the P (Ai) to Q(Ai) = 1.

Question. When is it appropriate to update as follows?

Q(B) =
n∑

i=1

Q(Ai)P (B|Ai), Probability Kinematics

Answer. When the invariance condition holds for each of the Ai’s:

Q(B|Ai) = P (B|Ai) for i = 1, . . . , n, Invariance

Notes:
• By the law of total probability, Q(B) =

∑
i Q(Ai)Q(B|Ai), in-

variance relative to all the Ai is equivalent to probability kinematics.
• Conditioning is the special case in which some Q(Ai) = 1.
• On the native ground of probability kinematics, you are your own

probability meter. In the context of your prior judgments, your new
observation urges new probabilities Q(Ai) = qi upon you. In the most
highly prized cases, you are able to explain these urges in terms of
considerations which would weigh with other experts as well. But the
urge is there, nudging the needle of your inner probability meter, even
in the absence of such an explanation.

3 Collaborative Updating11

We now move outside the native ground of probability kinematics into
a region where your new Q(Ai)’s are based on other people’s obser-
vations. You are unlikely to simply adopt such alien probabilities as

10When in doubt, condition on the stronger of two propositions for which your
Q is 1. This is a version of Carnap’s (1950, 1962: p. 211) “Requirement of Total
Evidence”.

11The best further reading is Wagner (2002).
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your own, for they are a confusion of the bare alien observation, which
you would like to use, with the alien prior judgmental state, for which
you may prefer to substitute your own.

We continue in the medical setting. You are a clinical oncologist,
but no longer a histopathologist. You want to make the best use you
can of the observations of a histopathologist whom you have consulted.

3.1 Adopt the Expert’s New Probabilities?

P and Q : Your probabilities before and after the histopathologist’s ob-
servation has replaced her prior probabilities P ′(Ai) for the diagnoses
by her posterior values Q′(Ai).

Will you simply adopt her new probabilities for the diagnoses, set-
ting your Q(Ai)’s = her Q′(Ai)’s? If so, you can update by probability
kinematics even if you had no prior diagnostic opinions P (Ai) of your
own; all you need are her new Q′(Ai)’s and your invariant conditional
prognoses P (B|Ai).

Note that she may have conditional prognoses P ′(B|Ai) different
from yours and invariant as yours. No matter. What concern you are
her diagnoses, not her prognoses.

3.2 Dissecting out the Purely Observational Part

But suppose you have priors P (Ai) which you take to be well-founded,
and although you have high regard for the histopathologist’s ability to
interpret histographic slides, you view her prior probabilities P ′(Ai)
for the various diagnoses as arbitrary and uninformed. (Perhaps she
has told you that she had no prior judgment in the matter, but for
the purpose of formulating her report adopted convenient flat priors,
P ′(Ai) = 1

n for all i.)
Here you would like to dissect out of the histopathologist’s re-

port the components that represent what she has actually seen, and
combine them with your own priors. These components will be her
Bayes factors for the diagnoses, Ai, against an arbitrary “anchor”
diagnosis—say, A1:12

β′
i =

her new odds on Ai against A1

her old odds on Ai against A1
=

Q(Ai)
Q(A1)

/
P (Ai)
P (A1)

.

12As in Schwartz et al. (1981). The choice of A1 is arbitrary, since the ratios
β′

i : β′
j would be the same with any other Ak as anchor (k = 2, . . . , n).
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In general, β(A : B) is your Bayes factor on A against B:13

β(A : B) =df
Q(A)
Q(B)

/
P (A)
P (B)

.

For diagnoses Ai, Aj we then have β(Ai : Aj) = βi/βj .
Your probabilities and Bayes factors are P,Q, β; the histopatholo-

gist’s are P ′, Q′, β′.
Writing your probability factor for Ai as

πi =df
Q(Ai)
P (Ai)

,

your Bayes factor on Ai against A1 can be written as

βi =
πi

π1
.

It is the histopathologist’s β′(Ai : Aj)’s that tell you what she has
learned about the diagnoses from the observation itself, with her prior
probabilities factored out.14 To form your posterior odds in the light
of her observations, you can simply multiply your prior odds on Ai

against A1 by her Bayes factors β′
i. It is straightforward to verify that

you can then update your probability for a prognosis B by using the
formula for probability kinematics in sec. 2.2, but with your Q(Ai)’s
computed as follows from her β′

i’s and your P (Ai)’s:

Q(Ai) =
P (Ai)β′

i∑
i P (Ai)β′

i

.

Note that this equation can also be written, equivalently and more
straightforwardly, in terms of unanchored probability factors:

Q(Ai) =
P (Ai)π′

i∑
i P (Ai)π′

i

,

Then the updating equations for P (Ai) �→ Q(Ai) and P (B) �→ Q(B)
can be written in terms that are neutral on the question of which alien

13In the special case where Q(−) = P (−|D), so that updating is by conditioning
on some data proposition D, this Bayes factor reduces to the “likelihood ratio”,
β(A : B) = P (D|A)/P (D|B).

14See Wagner (2002), sec. 4. Functions of the Bayes factors will do as well, e.g.,
Good’s (1983) “weight of evidence”, log β′(Ai : Aj).
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factors you adopt as your own, the β′
i or the π′

i: If all the ‘f ′
i ’s stand

for ‘β′
i’ or all stand for ‘π′

i’ and Ni is your normalization

Ni =
fi∑

i P (Ai)f ′
i

of f ′
i , then if Q(B|Ai) = P (B|Ai) the updating equations can be writ-

ten simply as

Q(Ai) = NiP (Ai), Q(B) =
∑

i

NiP (B ∧Ai).

3.3 Updating Twice: Commutativity

Here we consider the outcome of successive updating on the reports of
two different experts—say, a histopathologist and a radiologist.

If you update twice, should order be irrelevant?

Should 1�→ 2�→ = 2�→ 1�→ ?

The answer depends on particulars of

(1) the partitions on which 1�→ and 2�→ are defined;
(2) the mode of updating (by probabilities? Bayes factors?); and
(3) your starting point, P .

3.3.1 Updating on alien probabilities for diagnoses

A propos of (2), suppose you accept two new probability assignments
to the same partition—first one, then another.

• Can order matter?
Certainly. Since the second assignment simply replaces the first, the
result of accepting first one and then the other is the same as the result
of simply accepting the second, regardless of the first.

• When is order immaterial?
When there are two partitions, and updating on the second leaves
probabilities of all elements of the first unchanged. This happens when
the two partitions are independent relative to P .15

15For more about this, see Diaconis and Zabell (1982), esp. 825-6.
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3.3.2 Updating on alien factors for diagnoses

In updating by Bayes or probability factors f for diagnoses (see the
end of 3.2), order cannot matter.16

Example 1: One partition. Adopting as your own both a patholo-
gist’s factors f ′

i and a radiologist’s factors f ′′
i on the same partition—in

either order—you come to the same result: your overall factors will be
products f ′

if
′′
i = β′

iβ
′′
i = π′

iπ
′′
i of the pathologist’s and radiologist’s fac-

tors. Your final probabilities for the diagnoses and for the prognosis
B will be

Q(Ai) = NiP (Ai), Q(B) =
∑

i

NiP (B ∧Ai)

where Ni is the normalized factor you form from the alien f ′
i and f ′′

i :

Ni =
f ′

if
′′
i∑

i P (Ai)f ′
if

′′
i

Example 2: Two updates: a pathologist’s,
path�−→, with partition {A′

i}
and factors f ′

i (i = 1, . . . ,m), and a radiologist’s, rad�−→, with partition
{A′′

j } and factors f ′′
j (j = 1, . . . , n). These must commute, for in either

order they are equivalent to a single mapping, both�−→, with partition
{A′

i ∧ A′′
j |P (A′

i ∧ A′′
j ) > 0} and factors f ′

if
′′
j . Now in terms of your

normalizations

Ni,j =
f ′

if
′′
j∑

i,j P (A′
i ∧A′′

j )f
′
if

′′
j

of the alien factors, your updating equations on the partition elements
A′

i ∧A′′
j can be written Q(A′

i ∧A′′
j ) = Ni,jP (A′

i ∧A′′
j ). Then your new

probability for the prognosis will be

Q(B) =
∑

i,j

Ni,jP (B ∧A′
i ∧A′′

j ).

16Proofs are straightforward. See my Petrus Hispanus Lectures, II: ‘Radical Prob-
abilism’, Actas da Sociedade Portuguesa da Filosofia (forthcoming; and currently
available in http://www.princeton.edu/ bayesway/pu/Lisbon.pdf).
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4 Dorling on the Duhem-Quine Problem

Skeptical conclusions about the possibility of scientific hypothesis-
testing have been drawn from the presumed arbitrariness of answers to
the question of which to give up—a theory (e.g., in 4.2 below, general
relativity), or an auxiliary hypothesis (‘The equipment was in working
order’)—when they jointly contradict empirical data. The problem,
posed by Pierre Duhem in the first years of the 20th century, was
reanimated by W.V. Quine in mid-century.17 But the holistic con-
clusion depends on the assumption that deductive logic is our only
tool for confronting theories with empirical data. That would leave
things pretty much as Descartes saw them, just before the mid-17th
century emergence of the probabilistic (“Bayesian”) methodology that
Jon Dorling has brought to bear on various episodes in the history of
science. Here is an introduction to Dorling’s work, using extracts from
his important but still unpublished 1982 paper18

4.1 Setting the Stage

Were, as in Dorling’s analysis, updating is by conditioning on a data
statement D, the Bayes factor for a theory T against an alternative
theory S equals the likelihood ratio,

β(T : S) =
P (D|T )
P (D|S)

.

The empirical result D is not generally deducible or refutable by T
alone, or by S alone, but in interesting cases of scientific hypothesis
testing D is deducible or refutable on the basis of the theory and
an auxiliary hypothesis A (e.g., the hypothesis that the equipment
is in good working order). To simplify the analysis, Dorling makes
an assumption, prior independence, that can generally be justified by
appropriate formulation of A:

P (A ∧ T ) = P (A)P (T ), P (A ∧ S) = P (A)P (S),

Generally speaking, S is not simply the denial of T , but a definite
scientific theory in its own right, or a disjunction of such theories, all of

17Quine (1953), p. 41: ‘our statements about the external world face the tribunal
of sense experience not individually but as a corporate body.’

18This section is based on Dorling (1982). His work is also discussed in Howson
and Urbach (1993). See also Dorling (1979) and Redhead (1980).
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which agree on the phenomenon of interest, so that, as an explanation
of that phenomenon, S is a rival to T . In any case Dorling uses the
independence assumption to expand the right-hand side of the Bayes
Factor = Likelihood Ratio equation:

β(T : S) =
P (D|T ∧A)P (A) + P (D|T ∧ ¬A)P (¬A)
P (D|S ∧A)P (A) + P (D|S ∧ ¬A)P (¬A)

To study the effect of D on A, he also expands β(A : ¬A) with respect
to T (and similarly with respect to S, although we do not show that
here):

β(A : ¬A) =
P (D|A ∧ T )P (T ) + P (D|A ∧ ¬T )P (¬T )

P (D|¬A ∧ T )P (T ) + P (D|¬A ∧ ¬T )P (¬T )

4.2 Einstein/Newton, 1919

In these terms Dorling analyzes two famous tests that were dupli-
cated, with apparatus differing in seemingly unimportant ways, with
conflicting results: one of the duplicates confirmed T against S, the
other confirmed S against T. Nevertheless, the scientific experts took
the experiments to clearly confirm one of the rivals against the other.
Dorling explains why the experts were right:

“In the solar eclipse experiments of 1919, the telescopic observations
were made in two locations, but only in one location was the weather
good enough to obtain easily interpretable results. Here, at Sobral,
there were two telescopes: one, the one we hear about, confirmed
Einstein; the other, in fact the slightly larger one, confirmed Newton.
Conclusion: Einstein was vindicated, and the results with the larger
telescope were rejected.” (1982, sec. 4)

Notation
T : Einstein: light-bending effect of the sun
S: Newton: no light-bending effect of the sun
A: Both telescopes are working correctly
D: The conflicting data from both telescopes

In the Bayes factor β(T : S) above, P (D|T ∧A) = P (D|S ∧A) = 0
since if both telescopes were working correctly they would not have
given contradictory results. Then the first terms of the sums in nu-
merator and denominator vanish, so that the factors P (¬A) cancel
and we have

β(T, S) =
P (D|T ∧ ¬A)
P (D|S ∧ ¬A)
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Dorling continues: “Now the experimenters argued that one way in
which A might easily be false was if the mirror of one or the other of the
telescopes had distorted in the heat, and this was much more likely to
have happened with the larger mirror belonging to the telescope which
confirmed S than with the smaller mirror belonging to the telescope
which confirmed T . Now the effect of mirror distortion of the kind
envisaged would be to shift the recorded images of the stars from the
positions predicted by T to or beyond those predicted by S. Hence
P (D|T ∧ ¬A) was regarded as having an appreciable value, while,
since it was very hard to think of any similar effect which could have
shifted the positions of the stars in the other telescope from those
predicted by S to those predicted by T, P (D|S ∧ ¬A) was regarded
as negligibly small, hence the result as overall a decisive confirmation
of T and refutation of S.” Thus the Bayes factor β(T, S) is very much
greater than 1.

5 Radical Probabilism

Descartes sought to refute skepticism about experience by proving the
existence of a God (=df the perfect being) who surely does not de-
ceive us. On this “dogmatic” foundation of certainty he would build
empirical science.

Shortly after Descartes’s death, probabilistic thinking—in much the
same form in which we know it today—emerged from a famous corre-
spondence between Fermat and Pascal. It was given the place of honor
at the end of the best-selling “How to Think” book known as “The
Port-Royal Logic” (Arnauld, 1662):

“To judge what one must do to obtain a good or avoid an
evil, it is necessary to consider not only the good and the
evil in itself, but also the probability that it happens or
does not happen; and to view geometrically the proportion
that all these things have together.”

But a quasi-Cartesian dogmatism figured prominently in 20th century
thought about the foundations of probabilistic thinking. Here is an
example from the pragmatist–empiricist philosopher C. I. Lewis (1946,
p. 186):

“If anything is to be probable, then something must be cer-
tain. The data which themselves support a genuine prob-
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ability, must themselves be certainties. We do have such
absolute certainties, in the sense data initiating belief and
in those passages of experience which later may confirm
it.”

What I call “radical probabilism” denies this claim. The claim itself
seems to be based on the thought that conditioning on certainties is
the only way to update probabilities. That basis for dogmatic proba-
bilism is undermined by the existence of a generalized conditioning—
probability kinematics—as a way of updating on mere probabilities.

Radical probabilism offers Bayes factors as a surrogate for Lewis’s
absolute certainties. Lewis held that these certainties cannot

“be phrased in the language of objective statement — be-
cause what can be so phrased can never be more than prob-
able. Our sense certainties can only be formulated by the
expressive use of language, in which what is signified is a
content of experience and what is asserted is the givenness
of this content.”

In radical probabilism the Bayes factors βij do the job of your
ineffable sense certainties. Like those ineffables, your Bayes factors lie
outside the Boolean algebra of objective statements on which your P
and Q are defined. But where Lewis can give no intelligible account
of your sense certainities, radical probabilism can identify the β’s as
ratios of your new to old odds between items that are expresible in the
language of objective statement.

6 Real Subjectivism

Radical probabilism gets along without objective probabilities, real
chances (“R”). The thought is that these are nothing but projections
of judgmental probabilities P out into the world, whence we hear them
clamoring to be let back in. The following equation (“Miller’s Princi-
ple”) could be their return ticket:19

P [H|R(H) = r] = r if ‘r’ is a purely mathematical designator.
19Here, ‘r’ might be ‘.7’ or ‘1/π’, but not ‘1/(my mass in Kg)’, and not ‘R(H)’.

The thought is that you must be able to tell what number ‘r’ denotes without
recourse to any empirical facts. The need for this restriction is seen when we put
‘R(H)’ for ‘r’. We then have P [H|R(H) = R(H)] = R(H), which is equivalent to
P (H) = R(H). Unrestricted, Miller’s Principle thus implies that your subjective
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(If you know the real chance, that will be your judgmental probability.)
But they don’t need a return ticket; they never really left.

There certainly are numbers “out there”—numbers like the fraction
of 70-year-olds who live to be 80—and it may well be that if you knew
that number you would adopt it as your judgmental probability that
your 70-year-old uncle, Bob, will live to be 80. But maybe not. Maybe
you know that Bob comes from remarkably long-lived stock, in which
case your probability for his reaching 80 might be higher than the
statistics on 70-year-olds would suggest. (But maybe you also know
that Bob has pancreatic cancer, so that your probability is below the
statistical average for 70-year-olds.) This is the famous reference-class
problem. According to radical probabilism, this problem can be solved
by putting the horse before the cart, using your probabilistic judgments
to choose among the various numbers out there. But the point is that
there are enough familiar numbers out there—statistics, fractions of
green balls in urns, etc.—to do the jobs that objectivists send “real
probabilities” out there to do.

Once such numbers have been chosen, formulas that look rather
like the return ticket may come into play:

P (H|X = x) = x, where X is an ordinary random variable

Example. P (A green ball will be drawn|70% are green)=70% if you
think the balls are well mixed, etc.

To hypostasize R(H) as a physical magnitude is to sweep the sub-
jective element in “objective” probability under the carpet. We do
better to identify the parameter X case by case, as the fraction of
green balls in the urn, or of septuagenerian men who live to be 80, or
whatever. In all of these quests for a suitable X the great clue, the
sticky subjective core, is that, whatever X turns out to be, it must
satisfy the equation P (H|X = x) = x.

probabilities always agree with the objective probabilities. In effect, Miller (1966)
rejected the restriction and welcomed the result as a reductio ad absurdum of
the concept of judgmental probability. (Note that since ‘R’ means real chance,
not future probability, van Fraassen’s (1984) reflection principle is only formally
identical with Miller’s principle.)
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