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Why semigroups?

They enter the scene naturally, as can be seen already in De Finetti’s original
result:

Let P € M;({0,1}*) be exchangeable; then

P(xy,...,x,) = @y (Z $¢> = (Z X, n) = (Z(Ii’ 1))

i=1
with ¢ defined on the set

S:={(k,n) eN; | k <n}

which is (sub-) semigroup inside N3 .

Crucial point: ¢ is a socalled positive definite function on S (to be defined
below), therefore a (unique) mixture of socalled characters, taking here the form

(k,n) = p"¢" ", p,qeR



where in fact (easy to see) only the characters with p,q > 0 and p+¢ =1 play
a role. Inserting this we get

P(xy,...,z,) = (Z(CCZ', 1))

1=1

_ / - (2@- 1)) du(o)

/ﬁmmm@

- [ T —p"duty

for some (unique) p € M:([0,1]), which is De Finetti’s result.



Basic definitions and notations

S denotes an abelian semigroup, written additively, with neutral element 0, and
possibly with an involution s —— s~ , which in many cases is just the identity.

cg:5 —C isa iff
o(s+t)=o0(s)-o(t),o(s”)=0(s),0(0)=1

a:S— R, isan iff

als+t) <als)-alt),a(s™) =als),a(0) =1
f: 85— C is iff

1f(s)]| < C-als) VseS, forsome C >0
fis iff it is

a—bounded with repect to some absolute value «

w:S — C is (abbrev. p.d.“) iff
Z cicrp(sj+s.) >0 ¥VneN, ¢ elC,s;€ 8
jk=1



@:S — C is (,ep.d.®)iff s+—— p(s+a) ispd Vaes
S* := set off all characters of .S

P(S) := set of all p.d. functions on S

S :={o € 5| ois a-bounded} = {o € §* | |[o]| < a}

PYS) = {p € P(9S) | ¢ is a-bounded}

S := all bounded characters on S = {o € §* | |o| < 1}

PY(S) = all bounded p.d. functions on S
It is easily seen that

5" CPuS) = {p € P(S) | pl0) = 1}
STCPHS), ¢ ePHS) = l¢| <«
SCPIS), wePi(S) =gl <1

and each o € S7 is even c.p.d.



Theorem of Berg and Maserick

P(S) is a Bauer-simplex with S as its set of extreme points.

Corollary. If ¢ € P*S) is c.p.d. then the unique measure representing

¢ 1s concentrated on S .

Let R and S be semigroups, t: R — S with ¢(r7)
t(R) generating S .

(t(r))~,t(0) =0, and

Let 8: R — C~ {0} with 8(r~) =p(r) and B(0)=1.

R .= {(r,rs,...) € R® | r; = 0 finally} denotes the direct sum of countably
many copies of R .

Let ¢ : S — C be a given function.



MAIN THEOREM

(1) If D(rq,79,... H B(r;) (Z t(ri)) is p.d. then sois ¢ .

(ii) If furthermore |®(rq,79,...)| < C - H v(r;) for some function
v:R— R, 7(0) =1, and some C > 0, then

) =it {TT 5y 1 0t =

is an absolute value on S, ¢ is a—bounded, and the measure p representing
@ 1s concentrated on

W.={ceS|f-(cot)isp.d. on R}

(iii) Conversely, for p € M, (W) and ¢(s) := /J(s)d,u(c) the function & as
defined in (i) is p.d. and fulfills (ii) for some C' > 0 and some function - .

(iv) A corresponding result holds for c.p.d. functions, the measure in (ii) being
then concentrated on W, .



One of the most direct corollaries is the following result, characterizing
spherically exchangeable sequences:

Schoenberg (1938)

P € M+ (R>) is spherically symmetric
— P = / N(0,¢)*du(c) Ju e M (Ry)
0

Proof.
O(ry,re,...) = F [expi (Z Tij)} (r1,79,...) € R
= (ZT?) , for some ¢ : R, — C
(here 3=1,7=1,t(r) =r"
—> ¢ bounded, p.d., ¢(0) =1 = ¢(s) = /eAsd,u(s) 3 u € M ([0, 00)])
@ continuous = p({o0}) =0

—> O(ry,79,...) = / e_AZT?du(A) —> result. [J
0



With only slightly more effort we get the characterization of
Mixtures of the full 2—parameter normal family

X = (Xy, Xy, ...) real-valued such that
O(ry,re,...) = FE {expi (Z rijﬂ = (Z T, ZT?)
— P = N(a,c)>*du(a, c)

RXR+

An example using Laplace- instead of Fourier-transforms is this:
let Xl,XQ, ce Z 0 ; then

E [exp(— Zijj)} = (H(l + yj)) , for some ¢ : [1,00] — R

= P = /0 Y dp(N)

where vy = L):L'A_l

e e A ,80 v = e (standard exponential).



And
pPY = / ex’ du () | e) exponential with parameter A |
0

<:>P(X1Zal,XQZaQ,...)zgp(Zaj), some ¢ : R, — R

De Finetti’s theorem in extended form: Let X be finite or countable,
S asemigroup, t: X — S such that ¢(X) generates S .
B:X — 10,00, p: 5 — R, . Then

P e Mi(X>) fulfills

P(xy,...,x,) = Hﬁ(azi) C <Z t(azi)> Vn,x,

=P [krduo) 3uedMis)

with p concentrated on

W:={ceS |3 (0ot) e M1(X)}

_HO'




EXAMPLES:

L.

The original De Finetti result:
X 1},S ={(k,n) e N3 | k < n},
t( 1),6=1

0) = (a,

ogot € Mi(X) translates into

{0,
o(k,n) = p*¢" %, p,q > 0 is a general non negative character,
S

o(t(0)) +o(t(l)) =0(0,1)+0(l,1)=q+p=1.

X =1{0,1,2,...,k},k € N. Let again P € M}(X) fulfill
i=1 i=1

1
as before. Then P :/0 K, dp(p) with

k({5 = V4", ¢ = q(p) from p" + p" g+ ... + pg"~

10



3. X =Ny and P as before. Then P:/ voldu(a), v, geometric.
0

4. X =Ny . We consider P € M;(X*>) with

n

P(xy,...,x,) = H x%' C (Z(:)ji, 1))

1=1 1=1

— P = / 75 du(X), ) Poisson
0
Here we have ((x) = 1/x!. The choice G(x) =1/(x+ 1) leads to mixtures

of
il () 1=

U
—log(1 — u)

u'/(14+2z) (0 <u<1)and ky =g,

and [(x) = (szl) leads to negative binomials.

A more abstract result is the

11



Hewitt-Savage theorem

X compact, then
P € M (X%) exchangeable <= P = [x®du(k) Ipue€ ML(ML(X))

Proof. F :={f:4& —[0,1] ] f is continuous} . Then, with d; := 175,

E [H fj(Xj)} = (Z 6fj)

is c.p.d. and bounded, hence so is ¢ on N(()}—) , the free abelian semigroup over

jE'

= o(X5) = [TIrtdur. ne i (0.17)

[t is easy to see that u is concentrated on

T:={r:F —|0,1] | 7(1) = 1, 7 finitely additive}

and each 7 € T extends to a positive linear functional on C(X), i.e. 7 can

be identified with a Radon probability measure on X . Inserting this above gives
the wanted result. [J
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Remark 1. If X is just a measurable space then with
F={f: X —1[0,1]| f is measurable} one obtains

B [[1500)] = [ TLrtdutr). ne atim

T:={r:F—|0,1]| 7(1) = 1, 7 additive}

which is a ,,weak"” form of a general De Finetti type result.

with

Remark 2. As noted above, the Berg/Maserick theorem is an essential ingre-
dient in the proof of the main theorem. It can however also be deduced from it:

If ¢p: 5 — C isp.d. and abounded then ®(sy,s9,...) =@ (D> s;) is
p.d., and

| (s1,89,...) < C- Hoz S;)
With R= 5.t =1idg and (3 =1 the set W in the main theorem reduces to
S
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Remark 3. The main theorem can be looked at as a result on exchangeable
p.d. functions (here for simplicity we assume S without involution):
if &:R>® — R is p.d. and exchangeable, then

O(ry,re,...) = (Z 5Tj)

with ¢ : NéR) — R (and dp:=0). Then ¢ is p.d., and if |P(ry,79,...) [<
C'-1]~(r;), the function ¢ is a-bounded with «(d,) := y(r). So

w(i}%)z/Q(E:&DdM®

where p is a Radon measure on

W ={1t:R—R|r+—o(0,) =:7(r) pd.on Rand |7| <~}

= TePuUR) | 7] <7},

leading to
d(ry, 79, ... / HTT] du(T

a mixture of tensor powers of p.d. functions on R .
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Let’s take another look at the Main Theorem (with G =1) :

O(ri,ra,...) = ¢ (Zt(rj))

with the conclusion ® p.d. = ¢ p.d.

Put U := R ah(r,7,...) == S t(r;), then ¢ : U — S is onto and the
theorem says : | poy p.d. = ¢ p.d.

What is the crucial property of % enabling this conclusion?

V finite subsets {s1,...,s,} €S and {uy,...,u,} CU and
VNeN F{ujpn|j<n,p<m,a< N} CU such that

?ﬂ(UijY +uk:—qﬁ) = 5 + Sk_; "‘lb(up +uq_) for (japa Oé) 7& <k7Q76)

If this is fulfilled, and ¢(0) = 0, we call .
This holds for example if 1) is a homomorphism and onto, but this case is not
too Interesting.

15



THEOREM. Let U,S be two semigroups, v : U — S be strongly
almost additive, and ¢ : .S — C bounded. Then

o pd = ¢ p.d.

and ¢ is in fact a mixture of characters in

Sy ={oceS|oopd}

(n.b.: a compact subsemigroup of S ).

Furthermore:
{©o: S — C| ¢ bounded, p(0) =1,p0 p.d.}

is a Bauer simplex with S¢ as extreme points.
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Application to exchangeable random partitions

V =Av,v9,...} isa of Ni<= v; # ¢,v;Nv, = ¢ for j#k,
and |J,;v; =N.
For example {{i} |7 € N} or {N}, the two ,extreme® partitions of N .

P .= set of all partitions of N

V € P can be identified with the equivalence relation E(V) := |, vxv C N?

or with 1y € {0, 1}N2 , this last identification defining the (natural) topology
on P, turning it into a compact metric space .

For ACN and V € P we write

ACV «— JveVwithACv
(that is: A is not separated by the classes of V).

For U,V € P we define

U<V ulV VuelU [« E{U)CE(V)

17



Every subset of P has a unique minimal element w.r. to ,, < “, and for a family
A of subsets of N there is a smallest W &€ P such that A T W for each

A € A . In the particular case of A =U UV for U,V € P we write UV V
for this minimum, and call it (of course) their

The order intervals Py .= {W € P | U < W} fulfil Py N Py = Pyyy . For
U € P the classes u € U with |u| > 2 are called non-trivial, their union (U)
is called the . Obviously (U V V) C(U)U (V) so that

U ={U e P | (U) is finite}

is a subsemigroup w.r. to ,V “, with neutral element Uy = {{j} | j € N} . The
order intervals Py for U € U are clopen and generate the Borel sets of P .
Probability measures on P will be called

THEOREM. ¢ :U — R is p.d. and normalized (i.e. ¢(Uy) = 1)
<= 3 (unique) random partition p € M1 (P) with

o(U)=pu(Py) YUelU.
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leasy direction ,<=*:

2
n n

Z cickp(U; vV Uy) = / ZlepUj dp >0

k=1 j=1

A permutation 7 of N induces 7: P — P, 7w(V) :={n(v) |veV},and 7
1S continuous.

Definition. p € M} (P) is = u=u V.
Now u™(Py) = '“<PF(U)> , S0 4 is exchangeable iff

u(Py) = p(Py)
VUV el with {ue U | |ul=k})=|{ve V| =k} for k=2,3,...
ift u(Py)=pog(U) for some ¢ defined on

§ = N3]
with g(U) := Z 5’”’ :

uelU
u[>2
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This function g : U4 — S is in fact strongly almost additive; therefore the
THEOREM (Kingman)

M“(P) = {p € M(P)|u exchangeable} is a Bauer simplex whose extreme
points are precisely those p for which

w(Py) =o(g(U), Uel witho e S, .

Such a character o is given by a sequence (to,t3,...) in [0,1].

We see that

tn = (P, ny 1) 2}, ))s T > 2
is the p—probability for {1,...,n} not getting separated. For general U € U
the multiplicativity of o is reflected in a certain pattern of independence:

p(Py) = H By -

uelU
[u[>2

20



Kingman showed that there exists x = (x1,29,...) with z; > 0, sz <1,
such that

0. @)
tn:Zaz? for n=2,3,....
i=1

There is in fact a natural way to get this distribution g :

put zg:=1— in and let X7, Xo,... beiid with P(X; =1) =x;,i > 0.

i=1
Then

G={{7eN[Xj=c}[ce N U{{i} | Xi =0}~ {0}

is P-valued with distribution p .
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APPROXIMATION LEMMA FOR P.D. MATRICES

!
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(<)1)
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A = (aj;) € CP*P
1S given,

V neN

4 A, € CP*P" a5
indicated

If A, ispd. Vn
and

sup [maxAn(j,j)] < 00

n Jj<pn

then A is p.d..



