“Some Philosophical Reflections
“on de Finetti’s Thought

PATRICK SUPPES

My reflections arc divided into four parts. The first deals with de Finetti’s
pragmatism, the second with his rejection of determinism and indetermi-
nism, the third with the problem of axiomatizing qualitative probability,
and the fourth on coherence and consistency.

1 De Finetti’s pragmatism

Throughout his life, as far as I have a good sense of that, de Finetti held
to a strong form of pragmatism, Hefe is an important quotation-from-him——————- -
in his later years from the translation of his Theory of Probability (de Fi-

netti 1975: vol. 2, 201): !

In the philosophical arena, the problem of induction, its meatiing,
use and justification, has given rise to endless controversy, which,
in the absence of an appropriate probabilistic framework, has inevi-
tably been fruitless, leaving the major issues unresolved. It seems
to me that the question was correctly formulated by Hume (if I in-
terpret him correctly — others may disagree) and the pragmatists (of
whom [ particularly admire the work of Giovanni Vailati.)

And here is de Finetti’s footnote on Vailati (de Finetti 197’&5: vol. 2, 201):

Cf. G. Vailati, Scritti (Edited by Seeber), Florence (1911). Gio-
vanni Vailati, a mathematician of the Peano school, was an origi-
nal, profound and committed supporter of pragmatism in Italy
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(which had several features — which I, in fact, approve of — distjp.
guishing it from the American version of Peirce, James, etc.). ...

Let me say something about Giovanni Vailati. He admired Peirce apq
James, but the form of pragmatism he developed in Italy had several fe,.
tures that distinguished it from the American version. Here is a quotatiop
from Vailati in 1909-

The term “pragmatism,” according to its original creator Ch, S.
Peirce, appeared for the first time in 1871, in a series of debates be-
tween the members of the Metaphysical Club in Cambridge, Mass.
Peirce found that this was the proper word to indicate the method
followed by Berkeley in his investigations of the concepts of “sub-
stance,” “matter,” “realijt ,” etc. — even if such a method was not
explicitly formulated by the author. ... Peirce thought that this pro-
cedure used by Berkeley was an instance of a more general meth- -
odological process, which could be described like this: rhe only
way fo determine and clarify the [meaning] of an assertion is to
indicate which particular experiences, according to such assertion,
are going to take place, or would take Place given specific circum.-
stances. ... “Pra,qmamti_smllmcanmbemceneei-vedwtOWhavema““uti‘l“it‘arian'
character only to the extent that it makes it possible to getrid of a
certain number of “useless” issues... For instance, when we have
two assertions and we are not able to identify the particular experi-
ences that should occur in order to make one of the assertions true
and not the other, it is not proper to inquire which of the two is
true. In a case like this the two assertions, according to Peirce, have
to be considered simply as two different ways to say the same
thing. ... Peirce’s methodological rule appears to be, for what has
been said so far, an indication of the importance of examining our
assertions to identify a part that implies- some predictions, because
that is the part that can be confirmed or refuted by further experi-
ences. ... To entertain a certain belief instead of another means this,
for the pragmatist: to have a certain kind of expectations, different
from the expectations he would have, having he had a different be.
lief. ... In fact, besides our beliefs regarding the future, we have at
-~ least as many beliefs that, apparently, are only facts of the present
or the past. Nevertheless, if we look closer at such beliefs we can
see that a reference to the future js always an essential part of their
meaning. A typical example of this, examined by Berkeley, is rep-
resented by judgments on the existence of material objects. In his
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Theory of Vision — that is, after all, in every respects a theory of
“prediction” [previsione]. The common opinion is that the size, po-
sition and distance of objects are perceived in the same way as we
. perceive their color. Instead our visual perceptions are not able to

provide this kind of information immediately. Distances, shapes,
-and dimensions of objects are not “seen” by us, but rather “fore-
- seen”, or inferred from the signs provided by actual visual percep-
_ tions. ... (Vailati 1909, trans. by Claudia Arrighi)

Thts long passage is especially marked by its orientation of pragmatism
towards predicting the future. One cannot help but think that de Finetti’s
own theory of prevision was much influenced by what Vailati has to say,
especially in the last paragraph focused on Berkeley. It is not possible to
“'sketch all the ways in which de Finetti’s thought was influenced by
Vailati, but it is quite clear that there is a natural sympathy of ideas here
evident to any careful reader. 1t is unfortunate that the work of the Italian
pragmatists is not more available in English.

One way of offering more detail is to examine de Finetti’s allegiance
to operationalism, exemplified earlier in the work of the American physi-
cist P.W. Bridgman, explicitly referenced by de Finetti in several places,

but especially in the final chapter of his 1937 Paris fectures. He refers
there to Bridgman’s influential work 7he Logic of Modern Physics, pub-
lished in 1927, i

Here is de Finetti’s own very clear statement about operatlo’nahsm

With each of our assertions, a question mvanab!y surges into our
mind: has this assertion really any meaning? To give only one ex-
ample, we know that the notion of simultaneity seemed, not very
long ago, perfectly clear and sure, to thé point that it had been
thought possible to consider time as a notion given a priori. Why
do we no longer believe this today? Because we have been taught
the necessity of conceiving of every notion from-a point of view
which can be called “operational”. Every notion is only a word
without meaning so long as it is not known how to verify practi-
cally any statement at all where this notion comes up; in the exam-
ple given above, this practical verification is furnished us by Ein-
stein’s procedure employing light signals. An analogous evolution
took place some time ago in the mathematical sciences: once, for
example, the problem of knowing if 1 -1+ 1 -1+ ... = or not
was considered in a nebulous, mysterious, metaphysical way; it
sufficed to define what was to be understood by “limit” (for exam-
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ple ordinary limit, limit in the sense of Cesaro) and all the obscuri-
ties vanished. (de Finetti 1937/1964: 148)

Later, de Finetti goes on to say, “We only apply the notion of probability
in order to make likely predictions” (p. 150). This additional focus almost
exclusively on prediction takes us immediately back to Vailati’s form of
pragmatism. 1 think it is fair to say that of all the major figures in the
foundations of probability, it is de Finetti who is most deeply committed
to pragmatism and operationalism as the general philosophical founda-
tions of his thought.

2 Rejection of determinism and indeterminism

Again, let me begin with a quotation from de Finetti, an important one,
also from vol. 2 of The Theory of Probability:

Before turning to another topic, it would perhaps be appropriate to
clarify certain views on the theme of determinism, given the con-
nection with discussions pertaining to the present theory, and given
that we have commented upon it (even though in order to decide
that it was not relevant). In my opinion, the attachment to deter-

minism as an exigency of thought is now incomprehensible. Both
classical statistical mechanics (or Mendelian hereditary) and quan-
tum physics provide explanations — in the form of coherent theo-
ries, accepted by many people — of apparently deterministic phe-

" nomena. The mere existence of such explanations should be suffi-
cient to give the lie for evermore to the dogmatism of this point of
view. (de Finetti 1975: vol. 2, 324)

Almost everyone who has read very much of de Finetti at all knows very
well his strong rejection of determinism, well stated in the passage that |
have quoted, but to be found in many other places in his writing. I’ll have
more to say about this later. Here is another quote stating his animosity to
determinism in another way, bringing out, in this case, his sympathy with
the views of von Neumann:

The foundations of physics are those we have today (perhaps for
many decades, perhaps centuries), and I think it unlikely that they
can be interpreted (or adapted) in deterministic versions, like those
that are apparently yearned for by people who invoke the possible
existence of ‘hidden parameters’, or similar devices. I hold this
view not only because von Neumann’s arguments against such an
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“idea seem to me convincing (VN, pp. 313-328), but also because 1
~can see no reason to yearn for such a thing, or to value it — apart
~from an anachronistic and nostaigic prejudice in favour of the sci-

aili
motS}; entific fashion of the nineteenth century. If anything, I find it, on
m of the contrary, distasteful; it leaves me somewhat bewildered to have

to admit that the evolution of the system (i.e., of its functions/ } is

" deterministic in character (instead of, for example, being a random
process) so that indeterminism merely creeps in because of the ob- -
servation, rather than completely dominating the scene. (de Finetti
1975: vol. 2, 325)

Maria Carla Galavotti has brought to my attention the important fact that
. de Finetti rejected any absolute or metaphysical concept of indetermi-

1 the
litted
inda-

ones " nism, as well as that of determinism. Here is a revealing quotation, pub-

o lished late in de Finetti’s career:

- The alternative [between determinism and indeterminism] is unde-

n cidable and ... illusory. These are metaphysical diatribes over

e ‘things in themselves’; science is concerned with what ‘appears to

- - us’, and it is not strange that, in order to study these phenomena it

K e gy-i0-Some-cases-seem-more-useful-to-imagine-them-from-this-or———rer

- that standpoint, by means of deterministic theories... or indeter-

. ministic ones. (de Finetti 1976: 299-300) '

= For a more extended discussion of this topic, see Galavotti (1989). Rather

i- than pursue this general topic, | prefer to sketch a view about determin-

f ism and indeterminism that is not de Finetti’s, but is one with which I
~ think he would be in much agreement if it were 1aid out in detail, with the

very appropriate theorems that I refer to. A go,o.ci starting point is the entropy

1at I of familiar Bernoulli or Markov stochastic processes. 1 do not write down

1ave the equation, but note that the notion of entropy here is the rate of entropy

vy to change, not the entropy at a cross-sectional moment of a stationary proc-

with ess. The beginning of this story is the theorem proved by Kolmogorov

and Sinai in 1958:
I THEOREM 1. (Kolmogorov 1958, Kolmogorov 1959 and Sinai 1959). If
i two Bernoulli or Markov processes are isomorphic then their entropies

are the same.

w

L%

Until they proved this theorem the seemingly simple problem was open,
whether or not the Bernoulli process with probability 1/2 heads and 1/2

y—
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tails, and the Bernoulli process of a three-sided coin, with probability 13
for each side, are isomorphic. The theorem proves that they are not, be.
cause their entropies are not the same, and therefore by contraposition,
they are not isomorphic. The more difficult and surprising converse theg.
rem was proved by Ornstein in 1970 for the case of Bernoulli processes:

THEOREM 2. (Ornstein 1970). If two Bernoulli processes have the same
entropy they are isomorphic.

In a rather short time, and in a rather straightforward way, Theorem 2 was
generalized to:

THEOREM 3. dny two irreducible, stationary, finite-state discrete
Markov processes are isomorphic if and only if they have the same perio-
dicity and the same entropy. '

And, this theorem has as a natural corollary the following: an irreducible,
stationary, finite-state discrete Markov process is isomorphic to a Ber-

noulli process of the same entropy if and only if it is aperiodic. The sur--

prisingand_important_development,-particularly-with-the-proof-of-Orn=

stein’s theorem in 1970, is that entropy is a complete invariant for the
measure-theoretic isomorphism of ergodic Bernoulli or Markov proc-
esses. The word “complete” here means that to know if two such proc-
esses are isomorphic, we need only know if a single number is the same
for both of them, namely the entropy rate. .

Now 1 want to apply these ideas to a new view of determinism and in-
determinism. A good place to begin is the following quote from Peirce in
1892: o

Try to verify any law of nature, and you will find that the more
precise your observations, the more certain they will be to show ir-
regular departures from the law. We are accustomed to ascribe
these, and I do not say wrongly, to errors of observation; yet we
cannot usually account for such errors in any antecedently probable
way. Trace their causes back far enough, and you will be forced to

admit they are always due to arbitrary determination, or chance.
(Peirce 1892/1955: 331).

Peirce is making, in some ways, an obvious but still very important point.
The verification of deterministic laws can scarcely ever be said to be
complete, because there will be errors of measurement if continuous

L T A 227
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ty 173, uantities are involved. And, even in discrete processes involving large
t, be- _numbers errors are almost always found in the collection and analysis of
sition, data. It is a way of saying that the notion of a strictly deterministic law is

 theo- sn-idealized characterization of scientific laws.

1Ses: i - [ now turn to the beautiful example of Sinai billiards (named after the
“Russian mathematician Ya. G. Sinai for his important results, 1970).
same They are so named, because, unlike the idealized deterministic periodic
motion of an idealized particle of classical mechanics, chaos is introduced
-by placing a convex object in the middle of the billiard table. The particle
2 was js reflected off this convex object according to the same physical laws as
for the sides of the table. So, particles as idealized billiard balls satisfy the
ollowing rules: we have a rectangular box with reflecting sides, the clas-
screte 'sical law of reflection holds: the angle of reflection equals the angle of
rerio- -incidence, and there is no dissipation of energy. For Sinai billiards the
. convex obstacle is also an ideal reflector. For this physical situation we
.‘have the following idealized theorem: the motion of a Sinai billiard ball is

ciBble, + ergodic, and as a corollary of that such motion is strongly chaotic.

er-

It is widespread folklore in discussions of chaos by physicists that
» most important physical examples of chaos are deterministic. On the

other hand, thére is a varicty of evidence, especnally*”"'thematlcal argu-

i the ;. ments, that associated with chaos, particularly in the strongest chaotic
proc- -+ examples, are phenomena that can only be regarded as genuinely random
proc- - or stochastic in nature. It would be easy to argue that one has got to
same «:choose either the deterministic or stochastic view of phenomena, and at
+ least for a given set of cases, it is not possible to move back and forth in a

id in- - .coherent fashion. It is this view, also perhaps part of the folklore, that we
ce in “ want to argue very much against in the present discussion. We will be
' ~depending on general ideas from ergodic theory and in particular on the

re strong kind of isomorphism theorems proved by Dopald Ornstein and his
- - colleagues. Before we turn to the details, there are one or two other points
e we want to discuss in a very intuitive fashion. For example, if we use a
e billiard model of a mechanical particle, and we consider the deterministic
le model in the case of an ergodic motion, that is, one, for example, where
0 there is a convex obstacle in the middle of the billiard table, then there is
o an empirically indistinguishable stochastic model. The response to this
isomorphism might be, “Well yes, but for the case of ergodic motion

_ where the convex object is present we should choose either the simple
g“{;‘; Newtonian model”. Because this Newtonian model works so well in the

nonergodic periodic case when there is no convex object, it is natural to
uous
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say that it is not a real choice between the deterministic or stochagt;
models. Because of its generalizability the choice seems obviously to
the deterministic model.

But this argument can run too far and into trouble when we turn to
wider set of cases. On the same line we would be pushed to argue that the |
only kind of complete physical model for quantum mechanics must be
deterministic one, for example the kind advocated by Bohm, but the evi-
dence, once we turn to quantum mechanical phenomena, seems far from
persuasive for selecting as the unique intuitively correct model the deter.
ministic one., Here there is much to be said for choosing the stochastic
model, which is much closer in spirit to the standard interpretation of
classical quantum mechanics. Our point, without going into details, is that
whether we intuitively believe the model should be deterministic or sto-
chastic will vary with the particular physical phenomena we are consider-
ing. What is fundamental is that independent of this variation of choice of
examples or experiments is that when we do have chaotic phenomena,
especially when we have ergodic phenomena, then we are in a position to
choose either a deterministic or stochastic model. When such a choice
between different models has occurred previously in physics — and it has
occurred repeatedly in_a_variety of examples, such_as_free choice_of a
frame of reference in Galilean relativity, or choice between the Heisen-
berg or Schroedinger representation of quantum mechanics —, the natural
move is toward a more abstract concept of invariance. What is especially
interesting about the empirical indistinguishability and the resulting ab-
stract invariance in the present billiard case, is that at the mathematical
level the different kinds of models are inconsistent, that is, the assump-
tion of both the deterministic and the stochastic model leads to a contra-
diction when fully spelled out. On the other hand, it leads to no contradic-
tion at'the level of observations, as we shall see in an important class of
ergodic cases. (The remarks in the precedmg paragraph and this one are
close to ones made several years ago in a joint article with Acacno de Bar-

ros (Suppes and de Barros 1996).) :
' We can go further in terms of Sinai billiards with the concept of meas-
ure-theoretic isomorphism. To keep things in the context of finite-state
discrete processes, we can form a finite partition of the free surface on the
billiard table. This constitutes a finite partition of the space of possible
trajectories for the billiard and we correspondingly make time discrete in
terms of movement from one element of the partition to another. With
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ese constructive -approximations, the following theorem has been
!,'QV.ed:

HEOREM 4. (Gallavotti and Ornstein 1974). With the discrete ap-
proximation by a finite partition of the continuous Sow just described
bove, the discrete deterministic model of the billiard is isomorphic in the
easure-theoretic sense to a finite-state discrete Bernoulli process model
of the motion of the billiard,

It should be noted that instead of this theorem, we could have stated a
theorem for continuous time and such results are to be found in the paper
y Gallavotti and Ornstein. What the Gallavotti and Ornstein theorem
hows is that the discrete mechanics of billiard balls is in the measure-

lation of
S, is that
> or Sto

0n§ider- theoretic sense isomorphic to a discrete Bernoulli analysis of the same
hoice of - phenomena. However, it is to be emphasized that in order to claim that
'omena, . intuitively the two kinds of analysis are observationally indistinguishable
ition to _we need a stricter concept of isomorphism.

' CF’OICe . To show why this is so, we do not have to consider something as
d it has complicated as the billiard example but only compare a first-order
eofa Markov-process-and-a-Bernoulli-process-that-have-tle sarmie €ntropy rate

Teisen- ‘and therefore are isomorphic in the measure-theoretic sense. It is easy to

natural " show by very direct statistical tests whether a given sample path of any
ccially length, which is meant to approximate an infinite sequence, comes from a
g .ab- Bernoulli process or a first-order Markov process with strong transition
1atical dependencies. There is, for example, a simple chi-square test for distin-
sump- guishing between the two. It is a test for first-order versus zero-order de-
ontfa- pendency. The analysis is statistical and, of course, cannot be inferred
radic- from a single observation, but the data:afé?gusually decisive even for finite
1ss of sample paths that consist of no more than 100 or 200 trials.
¢ are A natural stricter concept is that of a-congruence due to Ornstein and
Bar- Weiss (1991). My explanation is intuitive in terms of trajectories of Sinai
billiard balls. Let D, be a classical mechanics détérministic model with o
:::Z the bound away from zero of errors of measurement, and let S, be a sto-
1 the chastic model such that the predictions of the trajectory of a Sinai billiard
sible such that D, and S, satisfy
¢ in (i) Both models predict correctly the trajectory within the error bound

Vith o.




28 / PATRICK SUPPES

(ii) The theoretical predicted trajectories t of models D, and S, are’

such that for any two points x and y at time ¢, the distance between -
o, (x,y) (deterministic model) and 0, (x.,y) (stochastic model) is legg .
than o, except for a set of exceptional points whose probability of oc.
curring is less than . '
So this concept of congruence is a probabilistic one, as a generalizatiop
of the familiar Euclidean distance between points in a plane. Using g.
congruence the following remarkable theorem can be proved.

THEOREM 5. (Ornstein and Weiss 1991). There are physical processes
which can equally well be analyzed as deterministic systems of classical
mechanics or as indeterministic Markov processes, no matter how many

observations are made, if observations have an accuracy bounded away
Jrom zero.

[ think de Finetti would have been pleased that for important chaotic ex-
amples of physical systems there is no observable distinction between
deterministic and indeterministic theories of the physical systems. There
being no observable distinction resonates nicely with his pragmatism and

1 nl:r‘m
operationalism:

Here is a very qualitative description of the kind of Markov process
cleverly constructed by Ornstein and Weiss to satisfy their Theorem.

1. Pick a > 0. |

2. Define a (biased) coin-tossing stochastic process.

3. Finitely partition the table.

4. The ball will always be in one element of the finite partition.
5. It stays in each element p of the partition for time 1(p).

6. The ball then jumps to one of a pair of points according to a toss of
the coin.

7. This pair of points depend on p.

Here are some final remarks on Ornstein and Weiss® results that are
meant to be in de Finetti’s spirit.

L. Such explicit theorems for concrete systems are difficult, but seem
likely to be true for a wide variety of chaotic phenomena.
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1S, are
between -
) is less
y of o¢

-~ 2. Such results are important in makmg the case that any thesis of uni-
_versal determinism or indeterminism is transcendental i.e., beyond ex-

perience.
-3, Transcendental, not false.

Axiomatizing qualitative probability

. One of the things for which de Finetti is justly famous is his emphasis on

' the ‘qualitative nature of probability and the possibility of expressing
many of our ordinary ideas about probability in qualitative as well as sub-
jective terms (de Finetti 1937/1964). These ideas are expressed well in a
long passage from the famous 1937 Paris lectures, which 1 quote:

lization
Ising q-

‘ocesses
lassical
w many

d away " Let us consider the notion of probability as it is conceived by all of

_ us in everyday life. Let us consider a well-defined event and sup-
pose that we do not know in advance whether it will occur or not;
the doubt about its occurrence to which we are subjects lends itself
to comparison, and, consequently, to gradation. If we acknowledge
only, first, that one uncertain event can only appear to us (a)
equally probable, (b) more probable, or (c) less probable than an-

ic ex-
etween
. There
sm and

other: second, that an uncertain event always Scems (0 US HWiore
probable than an impossible event and less probable than a neces-
- sary event; and finally, third, that when we judge an, event E’
more probable than an event E, which is itself judged . more prob-
“able than an event E", the event E' can only appear more prob-
able than E" (transitive property), it will suffice to add to these
three evidently trivial axioms a fourth, itself of a purely qualitative
nature, in order to construct rigorously the whole theory of prob-
ability. This fourth axiom tells us thaf iequalities are preserved in

Jrocess
1.

toss of logical sums: if E is incompatible with E; and with E,, then
E, v E will be more or less probable than E, vE , or they will be
equally probable, according to whether E, is more or less probable

at are than E,, or they are equally probable. More generally, it may be
deduced from this that two inequalities, such as

seem E, is more probable than E,,

E,' is more probable than E,',

can be added to give
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E, v E;' is more probable than E, v E,',

provided that the events added are incompatible with each other
(E, with E,*, E, with E,"). It can then be shown that when we

have events for which we know a subdivision into possible cases
that we judge to be equally probable, the comparison between their
probabilities can be reduced to the purely arithmetic comparison of
the ratio between the number of favorable cases and the number of
possible cases (not because the Judgment then has an objective
value, but because everything substantial and thus subjective is al-
ready included in the judgment that the cases constituting the divi-
sion are equally probable). This ratio can then be chosen as the ap-
propriate index to measure a probability, and applied in general,
even in cases other than those in which one can effectively employ
the criterion that governs us there. In these other cases one can
evaluate this index by comparison: it will be in fact a number,
uniquely determined, such that to numbers greater or less than that
number will correspond events respectively more probable or less
probable than the event considered. Thus, while starting out from a

p.ure.l_quuaiitati—v-emsy-stemmfma-xiem-srene“arrivesmat'a“quam'ita‘tive
measure of probability, and then at the theorem of total probability -
which permits the construction of the whole calculus of probabili-
ties. (de Finetti 1937/1964: 100-101) '

In Definition I, I express these axioms numbered as by de Finetti, with
only slight changes. Axiom DO just defines the formal structures used,
consisting of a nonempty set ), an algebra of sets representing events
closed under union and complementation, and the qualitative relation .+

expressing (weakly) more probable than:

DEFINITION 1. A structure Q = (Q, S, +) is a qualitative probability
structure if and only if the following axioms are satisfied for all 4, B, and
CinS:
D0.3 is an algebra of sets on ;
DI.A+BorB =+ 4 |
D2 IfA # D thend - @ and Q + A.
- D3.JfA+BandB +C,then 4 + C:
DA.UANC =D and BAC =D, then A + B if and only if AUC +
B uC.

i S s
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'-‘--De Finetti’s subdiviston remark after formulating the fourth axiom, the
- one expressing additivity, is one way to get immediately a quantitative

representatlon in the finite case. For this purpose we define equivalence

~ of events in the standard way: 4 =~ Bifand only if 4 = Band B+ A.1
will call this Axiom 5, the subdivision axiom, which has a deceptively
simple formulation, but it has as a consequence that if the set of possible

._outcomes is finite, then the possible outcomes all have the same probabil-

ity.

'DEFINITION 2. Let Q be a finite set, and let (Q, 3, ) be a qualitative

probability structure.- This structure is uniform when Axiom 5 is also sai-
isfied:

" AXIOM 5.IfA4 + B then there isaCin 3 such that A=BuUC.

We then have as a straightforward elementary theorem the existence of a
unique strictly agreeing probability measure P for such structures when

vith
sed,
nts

lity
md

they.are_finite

THEOREM 6. Let (Q, S, +) be a uniform finite qualitative probability

‘structure. Then this structure has a strictly agreeing umque probablllty

measure P, i.e., for events A and B
P(4) > P(B) ifand only if A £ B.

1 stated this theorem and gave the elementary proof in Suppes (1969: 6)
before I read de Finetti in any detail. Kraft,Pratt, and Seidenberg (1959)
showed that finite qualitative probability structures, in the sense of Defi-
nition 1, do not in general have a strictly agreeing probability measure.
Their counterexample has five possible outcomes. *

There is a further step that de Finetti did not formally take. By having
a set of standard events of equal probability, it is possible to approximate
the probability of any event even when the space of possible outcomes is
infinite.

. Here is the definition of the structure and the theorem of approximate
measurement of belief 1 gave in Suppes (1974) with acknowledgment of
the earlier work of the godfathers of modern Bayesian thought — Ramsey,
de Finetti, and Savage.
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From a formal standpoint, the basic structures to which the axiomg
“apply are quadruples (Q. 3, &, +), where as before, Q is a nonempty
set, 3 is an algebra of subsets of Q,and £ js the qualitative probability
relation, & is a similar finite algebra of sets, intuitively the events that are
used for standard measurements, and | shall refer to the events in § a5

standard events, S, T, etc.

DEFINITION 3. 4 structure @ = (Q.3,5+) is a Jinite approximate
qualitative probability structure if and only if Q is a nonemplty set,
Sand $ are algebras of sets on Q, and the Jollowing axioms are satis-
Jied for every A, Band C in S and every S and T in &
Axiom 1. (Q,3,%) is a qualitative probability structure in the sense of
Definition 1;
Axiom 2. § is a finite subset of 3, and (2,8 %) is a uniform qualitg-
tive probability structure.

A minimal element of §'is any event 4 in $such that 4@, and it is not
the case that there is a nonempty B in & such that B is a proper subset of
A. A minimal open interval (S,8") of & is such that_S <5 and-§'—§

is equivalent to a minimal element of &, Axiom 5, stated earlier, is the
main structural axiom, which holds only for the finite subalgebra and not
for the general algebra.

In stating the representation anid uniqueness theorem for structures sat-
isfying Definition 3, in addition to an ordinary probability measure on the
standard events, I shall use upper and lower probabilities to express the
inexact measurement of arbitrary events. A good discussion of the quanti-
tative properties one expects of such upper and lower probabilities is
found in Good (1962). All of his properties are not needed here because
he dealt with conditional probabilities. The following properties are fun-
damental, where PB.(4) is the lower probability of an event 4 and

P'(A) is the upper probability (for every 4 and B in 3):

I. P(4)=0. '
[ A(Q)=P(Q)=1,
NLIf AnB=@ then

B(A)+P(BYSR(AUB)< R()+ P (BYSP (AUB)< P (4)+ P (B)

[
.
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.Condition (I) corresponds to Good’s Axiom D2 and (IIl) to his Axiom

€ aXiOthg

'onempty I ps

obability e For standard events P(S)=PE(S)=P"(S). For an arbitrary event A4
s t.hat are . '..not equivalent in qualitative probability to a standard event, | think of its
S Sas :“true” probability as lying in the open interval (£ (4), P'(4)).

* “In the fourth part of Theorem 7, I define a certain relation and state it
is a semiorder with an implication from the semiorder relation holding to

roximate ““an ‘inequality for upper and lower probabilities. Semiorders have been
nply se, “fairly widely discussed in the literature as a generalization of simple or-
e satis- " “dets, first introduced by Duncan Luce. 1 use here the axioms given by
| ~ Scott and Suppes (1958). A structure (4,*~) where 4 is a nonempty set
' sense of and*>- is a binary relation on A4 is a semiorder if and only if for all
, : a;brsr,C,,dE A:
quatita: ; ~Axiom 1. Not a* »a;
Axiom 2. If a*>~band c*~d then either a*~d or c*=b :
| it is not Axiom 3. If a*>b and b*>c then either a*~d or d*>c.
subset of ‘
IS =5 THEOREM 7 Ler @ = (Q3,8E) be a finite approximate qualitative
’r, is the probability structure. Then
. and not (i) there exists a probability measure Pon & such that for any two
. standard events Sand T g
ures sat- _ T ifand only if P(S)= P(T),
re on the (ii) the measure P is unique and assigns the same positive probability
ress the . to each minimal event of 8,
?ﬁ%‘amf' (iii) if we define P. and P as follows: *:
Ibz;zsuslz | (a) for any event A in 3 equivalent to somg standard event S ,
are fun- P(A)=P (4)=P(S),
A4 and (b) for any A in 3 not equivalent to some standard event S,
but lying in the minimal open interval (S,S") for standard events
S and S’
P.(A)=P(S)and P"(4)=P(S"),
then P. and P’ satisfy conditions (I)--(II) for upper and lower
0+ P (B) probabilities on 3, and

(c) if n is the number of minimal elements in & then for every A

inS
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P (A)~P(AH<n,
(iv) if we define for A and B in 3
A*= B if and only if 3§ in &such that A> S > B,

then *~ is a semiorder on 3, if A*=B then P(A)= P (B), and if
P(A)> P (B) then A+ B.

This theorem expresses a simple constructive result about approximate
measurement of subjective probability. It is, | believe, very much in the
spirit of informal remarks that occur in de Finetti’s writings about such
approximations,

Finally, I consider an extension of Definition | to give necessary and
sufficient conditions for the existence of a unique strictly agreeing prob-
ability measure. In brief, by enlarging the structures to include elemen-
tary random variables, Definition 1 can be extended to give necessary and
sufficient conditions for all sets Q, finite or infinite.

If A is a set, A’ is its indicator function, which is a random variable,
Thus, if 4 is an event

(1 ifwme 4,

A(w) =
(@) 0 otherwise.

We need to go slightly beyond the indicator functions. The move is
from an algebra of events to the algebra 3° of extended indicator func-
tions relative to 3. The algebra 3 is just the smallest semigroup (under
function addition) containing the indicator functions of all events in 3. In
other words, 3" is the intersection of all sets with the property that if 4 is
in 3 then A’ isin3 and if A" and B are inG3", then A" + B is
in3". "

Then, to have A"+ B is to have, intuitively, the expected value of
A" equal to or greater than the expected value of B'. The qualitative
comparison is now not one about the probable occurrences of events, but
about the qualitative expected value of certain restricted random vari-
ables. What the representation theorem below shows is that very simple

necessary and sufficient conditions on the qualitative comparison of ex-
tended indicator functions guarantee existence of a strictly. agreeing,
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finitely additive measure P, whether the set Q of possible outcomes is

finite or infinite, 1.e., P(4) + P(B) ifand only if 4 £ B.

DEFINITION 4 (Suppes and Zanotti 1976). Let Q be a nonempty set, let

S be an algebra of sets on Q, and let & be a binary relation onS’, the
algebra of extended indicaior functions relative to 3. Then the qualita-
tive algebra (Q,3,%) is qualitatively satisfactory if and only if the fol-

lowing axioms are satisfied for every A" B ,and C' inS":

Axiom 1. The relation £ is a weak ordering of 3 ;
Axiom 2. Q' - ;
Axiom3. A"+ @& ;
Axiom 4. A"+ B jf and only if A" +C + B’ +C’;
 Axiom 5. If A" =B then for every C' and D" in 8 there is a posi-
tive integer n such that nA* +C + nB +D’.

ue of

tative

s, but

vari-
imple
f ex-
seing,

These axioms In terms of qualitative expectation fit in with de Finetti’s
framework of analysis. Only Axiom 5 needs explanation. It is one stan-
dard form of an Archimedean axiom.

]

THEOREM 8. Let Q be a nonempty set, let 3 be an algebra oféets on Q,
and let £ be a binary relation onS . Then a necessary and sufficient
condition that there exists a strictly agreeing probability measure on 3

is tl_iat there be an extension of £ from 371033 such that the qualitative
algebra of extended indicator Sunctions (Q, 3"+ ) is qualitatively satis-
Jactory.

Moreover, if (Q, 3" ,+ ) is qualitatively satisfactory, then there is a unique

strictly agreeing expectation function on 3 and this expectation function
generates a unique strictly agreeing probability measure on S .

‘4 - Coherence and consistency

1 summarize my main points, which, I realize, not everyone will agree

with.
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1. Coherence is an important concept for de Finetti and almost all subjec.
tivists.

2. Prior to experimentation, coherence replaces truth as the central phi-
losophical concept.

3. But coherence is not a strong enough constraint on experimental scien-
tists or engineers prior to actual experimentation. We must believe their
priors are based on serious past experience. This is a point not well
enough recognized by some Bayesians.

4. It is reasonable to hold that even for the hypothesis being tested, “Not
all priors are equal.”

5. My focus is on coherence itself and its formal complexity as a prob-
lem.

6. In most advanced work in statistics, the problem of coherence is as-
sumed, not investigated. It amounts to assuming the family of random
variables for the problem at hand has a joint distribution, even when the
prior information is far from being decisive on this point. As an example,
the nonexistence of joint distributions for pairwise correlations is a famil-
tar aspect of quantum- entanglement experiments.

7. As Fréchet pointed out, it is easy for persons to have irrational, i.e.,
_mmpmmwﬂm&fmmpMM_“——“
: 8. Here is a simple artificial example. We are given three random vari-
ables X, Y, and Z with possible values + 1 and expectations

EX)=EKY)=EKZ)=0,
and

E(XY)=0.6

KYZ)=0.7
Given a meteorological story or somethmg similar, respondents are asked
their prior for £(XZ) =7

Bob says, | estimate £(XZ) = 0.25.

Question: Is Bob coherent? Answer: No.
We have the following inequalities for the three correlations of X, Y, and
Z to have a joint distribution (Suppes and Zanotti 1981):
- -1 S EXY)Y+ KYZ) + E(XZ) < 1+ 2Min(E(XY), E(YZ), E(XZ)).
The values assigned to the correlations do not satisfy these inequalities,
so Bob is incoherent, even though he is unlikely to know it. An objection
to this example is that | am assigning priors to the correlations, but this is
really no different than asking for the three pairwise distributions, and
usually the triple moment £(XYZ) would be ignored. The essential point
is that there is little if any discussion in the literature of complicated pri-
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ors and their problem of coherence. Betting quotients are not constructed
in fact for anything very complicated. I am just expressing here my skep-
ticism that for complicated stochastic processes and related entities, proof
of coherence can be taken as a serious requirement, any more than proof
of consistency is a prerequisite to do classical mathematical analysis.

9. Consistency has been an ideal but unattainable goal of pure mathemat-
ics since the revolutionary results of Godel in the 1930s. Based on this
experience, coherence seems hard to guarantee in advanced work in
probability and statistics, a point that does not seem to be fully appreci-
ated among Bayesian statisticians. I am just sorry I did not ever discuss
this problem with de Finetti, on the several occasions when we had long
philosophical conversations. But I do want to make clear I think he would
have had a lot to say, and would have had no difficulty in putting his own
touch on how to think about such problems. Here is a quotation from
1961, the publication of the proceedings of a colloquium entitled La Dé-
cision in 1960 in Paris, the occasion of my first meeting with de Finetti:

Sans doute, dans les évaluations pratiques complexes tout homme
réel est incapable d’échapper a des contradictions. Malheureuse-
ment, la qualification de “comportement rationnel” employée par-

n vari-

¢ asked

Y, and

).

1alities,
yjection
t this is
ns, and
al point
ted pri-

fois, assez improprement, pour le comportement conforme a la
théorie, a fait souvent soupgonner qu’on prétendait que tous les
‘hommes (les fous exceptés) seraient infailliblement et auto-
matiquement conduits par leur propre psychologie & s’y tenir; ou
que ¢’est la psychologie que on a imaginée pour un type
- d’homme hautement idéalisé. Ni ’un ni [’autre, comme on vient de
VOir. ‘

Un fait différent est par contre d’admettre explicitement comme un
des effets de I’idéalisation propre a tout schéme: mes décisions
réelles dépendent aussi de facteurs accessoires qu’il faut considérer
a coté du schéme principal. (de Finetti 1961: 164)

We had at that 1960 meeting a lively discussion of the special role of the
axiom of choice in the foundations of mathematics, but I can no longer
remember any of the particular remarks either one of us made. :
The details are gone from our several meetings over two decades, but
cven now, more than twenty years after de Finetti’s death, I remember
vividly one lasting impression. Of the many mathematicians and statisti-
cians I have known over my long life, Bruno de Finetti was the most -
deeply philosophical.
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