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ON NONCOMMUTATIVE DISTRIBUTIONAL SYMMETRIES AND DE
FINETTI TYPE THEOREMS ASSOCIATED WITH THEM

WEIHUA LIU

ABSTRACT. We prove general de Finetti theorems for classical, free and boolean inde-
pendence. Our general de Finetti theorems work for non-easy quantum groups, which
generalizes a recent work of Banica, Curran and Speicher. For infinite sequences, we will
determine maximal distributional symmetries which means the corresponding de Finetti
theorem fails if the sequence satisfies more symmetries other than the maximal one. In
addition, we define boolean quantum semigroups in analogue of easy quantum groups by
universal conditions on matrix coordinate generators and show some boolean analogue
of de Finetti theorems.

1. INTRODUCTION

The area of distributional symmetries is one of the richest of modern probability theory.
The most obvious problem in this area is to characterize the class of objects of a given type
with a specified symmetry property. For example, de Finetti’s fundamental theorem states that
an infinite sequence of random variables, whose joint distribution is invariant under all finite
permutations, is conditionally independent and identically distributed. Later, in [6], rotatability
and other continuous symmetries were considered by Freedman. One can see [§] for more details.

Exchangeability and rotatability are classical symmetries associate with permutation groups
and orthogonal groups. The quantum analogue of permutation and orthogonal groups were
given by Wang in [21,122]. They are compact quantum groups in the sense of Woronowicz’ matrix
pseudogroups [24, 25]. In [9], by using symmetries associated with quantum permutation groups,
Kostler and Speicher discovered a free analogue of classical de Finetti theorem: an infinite
sequence of noncommutative random variables are invariant under quantum permutations is
equivalent to the fact that the random variables are identically distributed and free with respect
to the conditional expectation onto their tail algebra. A free analogue of Freedman’s work on
rotatability was given by Curran in [4].

In 3], both classical symmetries and quantum symmetries are studied in the “easiness” formalism.
Roughly speaking, those structures are quantum groups associated tensor categories of parti-
tions. For each n, it was shown that there are six easy groups which are denoted by S,, O,,
By, H,, B],, S!,. We will denote the algebras of continuous functions on these groups by Cs(n),
Cy(n), Cp(n), Cr(n), Cy(n), Cy(n), respectively. In the quantum aspect, for each n, together
with the work of Weber [23], there are seven easy quantum groups which are denoted by Ag(n),
Ay(n), Ap(n), Ap(n), Ag(n), Ay(n), Ayz(n). All these algebras are generated by n? matrix
coordinates u;;’s which satisfy certain relation R. The relations R for Ci(n) and A.(n) are
suitable such that all these algebras are Hopf algebras in the sense of Woronowicz|24]. The
distributional symmetries associated with Woronowicz’s are defined via coactions of quantum
groups on noncommutative polynomials in the sense of Sottan [14]. Among these symmetries, in
[2], Banica, Curran and Speicher studied de Finetti theorems for Cs(n), Cy(n), Cy(n), Cp(n) and
Ag(n), Ao(n), Ap(n), Ap(n). In short, these symmetries can characterize independence relations
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which are classical or free, and can characterize some special distributions which are symmetric,
shifted central limit and centered central limit laws. One goal of this paper is to study de Finetti
theorems for all compact quantum groups, for classical and free independence, which are either
between Cs(n) and Cy,(n) or between Ag(n) and Ay(n).

In [13], Ryll-Nardzewski showed that de Finetti theorem holds under the weaker condition
of spreadability. Therefore, for infinite sequences of random variables, different symmetries
may characterize a same property. Another goal of this paper is to determine that under what
conditions the symmetries characterize a same property for infinite sequences. In our compact
quantum group framework, we will show that there is no characterization other than what Cs(n),
Co(n), Cp(n), Cr(n) and Ag(n), Ao(n), Ap(n), Ap(n) can characterize. On the other hand, we
will show that these symmetries are maximal which means the corresponding de Finetti theorem
fails if the sequence satisfies more symmetries other than a maximal one.

In [17, [18], it was shown that there is a unique non-unital independence, which is called
boolean independence, in noncommutative probability. The study of distributional symmetries
for boolean independence was started in [11]. We constructed a family of quantum semigroups in
analogue of Wang’s quantum permutation groups and defined their coactions on joint distribu-
tions of sequences. It was shown that the distributional symmetries associated those coactions
can be used to characterize boolean independence in a proper framework. In a recent work of
Hayase|17], by following the idea of Banica and Speicher, many distributional symmetries related
to boolean independence were constructed via the category of interval partitions. By using those
distributional symmetries, Haysase find de Finetti theorems for a boolean analogue of easy quan-
tum groups. In this paper, we will defined quantum semigroups, which are related to boolean
independence in analogue of easy quantum groups via some universal conditions, Bg(n), B,(n),
By(n), Bp(n), Bg(n), By(n). Our quantum semigroups are quotient algebras of Hayase’s. We
do not have maximal distributional symmetries for boolean independence, but we provide a way
to check de Finetti theorems for some quantum semigroups other than these universal ones.

Our main result is the following de Finetti theorem:

Theorem 1.1. Let (A, ¢) be a W*-probability space and (z;);eny be a sequence of random
variables which generate A

e Classical case:
Suppose that A is commutative. Let {E(n)}n,en be a sequence of orthogonal Hopf
algebras such that Cs(n) C E(n) C Cy(n) for each n € N. If the joint distribution of
(2;)ien is E(n) invariant, then there are a W*-subalgebra 1 C B C A and a ¢-preserving
conditional expectation E : A — B such that

1. If E(n) = Cs(n) for all n, then (z;);en are conditionally independent and identically
distributed with respect to E.

2. If Cs5(n) C E(n) C Cy(n) for all n and there exists a k such that E(k) # Cs(k), then
(x;)ien are conditionally independent and have identically symmetric distribution
with respect to E.

3. If Cs(n) € E(n) C Cp(n) for all n and there exists a k such that E(k) # Cs(k),
then (z;);en are conditionally independent and have identically shifted-Gaussian
distribution with respect to F.

4. If there exist ki, ko such that F(ky) € Cp(k1) and E(ke) € Cy(k2), then (z;);en are
conditionally independent and have centered Gaussian distribution with respect to
E.

e Iree case:
Suppose ¢ is faithful. Let {E(n)},en be a sequence of orthogonal Hopf algebras such
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that Ag(n) C E(n) C A,(n) for each n. If the joint distribution of (z;)ien is E(n)
invariant, then there are a W*-subalgebra 1 C B C A and a ¢-preserving conditional
expectation F : A — B such that

1. If E(n) = As(n) for all n, then (x;);en are freely independent and identically
distributed with respect to F.

2. If Aj(n) C E(n) C Ap(n) for all n and there exists a k such that E(k) # As(k),
then (z;);en are freely independent and have identically symmetric distribution
with respect to E.

3. If As(n) C E(n) C Ap(n) for all n and there exists a k such that E(k) # As(k),
then (z;);en are conditionally independent and have identically shifted-semicircular
distribution with respect to F.

4. If there exist ki, ko such that E(k1) € Ap(k1) and E(ks) € Ap(kz), then (x;);cn are
freely independent and have centered semicircular distribution with respect to F.

e boolean case:
If ¢ is non-degenerated. Let {E(n)},en be a sequence of orthogonal boolean quantum
semigroups such that Bs(n) € E(n) C B,(n) for each n. If the joint distribution of
(x;)ien is E(n) invariant, then there are a W*-subalgebra(not necessarily contains the
unit of A) B C A and a ¢-preserving conditional expectation E : A — B such that

1. If E(n) = Bg(n) for all n, then (z;);en are boolean independent and identically
distributed with respect to E.

2. If Bs(n) C E(n) C By(n) for all n and there exists a k such that E(k) has a quotient
algebra F’'(k) that As(k) € E'(k) € A,(n), then (z;);en are boolean independent
and have identically symmetric distribution with respect to F.

3. If Bs(n) € E(n) C By(n) for all n and there exists a k such that E(k) has a quotient
algebra F'(k) that As(k) € E'(k) C Ap(n), then (z;);en are boolean independent
and have identically shifted-Bernoulli distribution with respect to E.

4. If there exist ki, ko such that F(k;) and E(ky) have quotient algebras E'(k;) C
Ao(k1) and E' (ko) C A,y(ks2) such that E(ky) € Ap(k1) and E' (ko) € Ap(ke), then
(x;)ien are conditionally independent and have centered Bernoulli distribution with
respect to F.

The paper is organized as follows. In section 2, we recall some definitions in noncommutative
probability and combinatorial tools. In section 3, we recall orthogonal Hopf algebras and study
their properties. In section 4, we define boolean quantum semigroups in analogue of easy quan-
tum groups via certain universal conditions. In section 5, we give the proof of our main theorem
and show some applications of the main theorem.

2. PRELIMINARIES AND EXAMPLES

In this section, we recall some necessary definitions and notation in noncommutative proba-
bility. For further details, see texts [9, 11, 12, 20].

2.1. Noncommutative probability. This part is for noncommutative probability theory and
universal independence relations.

Definition 2.1. A noncommutative probability space is a pair (A, ¢), where A is a unital
algebra, and ¢ : A — C is a linear functional such that ¢1(4) = 1. Elements in A are called
noncommutative random variables. (A, ¢) is a C*-probability space if A is a C*-algebra and
¢ is a state, i.e. norm one positive linear functional. (A, ¢) is a W*-probability space if A is
a W*-algebra and ¢ is a normal state, i.e. W*-operator continuous state. The elements of A
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are called random variables. Let 2 € A be a random variable, the distribution of x is a linear
functional p, on C[X] such that

pa(P) = ¢(P(x))
for all P € C[X], where C[X] is the set of complex polynomials in one variable.

In this paper, we will be working on W*-probability spaces (A, ®). We require A to be
commutative when we work on classical independence. We require ¢ to be faithful when we
work on free independence. 1 When we work on boolean independence, we require ¢ to be
non-degenerated, i.e. the GNS representation associated with ¢ is faithful.

Definition 2.2. Let I be an index set. The algebra of noncommutative polynomials in |I|
variables, C(X;|i € I), is the linear span of 1 and noncommutative monomials of the form
Xflle; e Xl-k: with 41 # i3 # --- # 4, € I and all k;’s are positive integers. For convenience,
we use C(X;|i € I)g to denote the set of noncommutative polynomials without a constant term.
Let (x;)icr be a family of random variables in a noncommutative probability space (A, ¢). Their
joint distribution is a linear functional p : C(X;|i € I) — C defined by
k1 vk kn ki, .k kn
N(XillXi; e X )= ¢(xi11xi; ceapt),

in

and p(1) = 1.

Remark 2.3. In general, the joint distribution depends on the order of the random variables.
For example, let I = {1,2}, then pg, 5, may not equal fiz, 5,. According to our notation,
s (X1X2) = (2122), DUt g, 20 (X1X2) = d(2271).

Definition 2.4. Let (A, ¢) be a noncommutative probability space.

e Suppose that A is commutative. A family of unital subalgebras (A;);cr of A are said to
be classical independent if

Plaraz - an) = dlar)d(az) - - - pan),

whenever ay, € A;,, i....,i, are pairwisely different . Let (2;);er be a family of random
variables and .A;’s be the unital subalgebras generated by x;’s, respectively. We say
the family of random variables (x;);es are classical independent if the family of unital
subalgebras (A;);er are classical independent.

e A family of unital subalgebras (A4;);er of A are said to be freely independent if

¢(ar---an) =0,

whenever a, € A;, , i1 # g # -+ - # in and ¢(ar) = 0 for all k. Let (x;);er be a family of
random variables and A;’s be the unital subalgebras generated by x;’s, respectively. We
say the family of random variables (x;);c; are freely independent if the family of unital
subalgebras (A;);cs are freely independent.

e A family of (not necessarily unital) subalgebras {A;|i € I} of A are said to be boolean
independent if

P(x129 - 1) = P(1)P(22) - - D(20)

whenever x, € A;, with i; # g # --- # i,. A set of random variables {z; € Ali € I}
are said to be boolean independent if the family of non-unital subalgebras A;, which are
generated by x; respectively, are boolean independent.

One refers to [5] for more details of boolean product of random variables.
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Definition 2.5. An operator valued probability space (A, B, E : A — B) consists of an algebra
A, a subalgebra B of A and a B — B bimodule linear map F : A — B i.e.
E[blabg] = blE[a]bg, E[b] =b

for all by,by,b € B and a € A. According to the definition in [19], we call E a conditional
expectation from A to B if E is onto, i.e. E[A] = B. The elements of A are called random
variables.

Since the framework for boolean independence is a non-unital algebra in general, we will not
require our operator valued probability spaces to be unital.

Definition 2.6. Given an algebra B, we denote by B(X) the algebra which is freely generated
by B and the indeterminant X. Let 1x be the identity of C(X), then B(X) is set of linear
combinations of the elements in B and the noncommutative monomials bgXb; Xbs - --b,_1Xb,
where b, € BU{Clx} and n > 0. The elements in B(X) are called B-polynomials. In addition,
B(X)o denotes the subalgebra of B(X) which does not contain a constant term i.e. the linear
span of the noncommutative monomials by X b Xbg - - - b,,—1 Xb,, where by, € BU{Clx} and n > 1.

Operator-valued independence are defined as follows:
Definition 2.7. Given an operator valued probability space (A, B, E : A — B) such that A and
B are unital.
e Suppose that 4 is commutative. A family of unital subalgebras {A4; D B};cs are said to
be conditionally independent with respect to E if
Elay - ay] = Elai]Elas] - -~ Elay],

whenever a;, € A;, and i1, ..., i, are pairwisely different. A family of (x;);cr are said to be
conditionally independent over B if the unital subalgebras {A;};c; which are generated
by x; and B respectively are conditionally independent, or equivalently

Elp1 (@i )p2(iy) - - - pn(2i,)] = Elp1(wiy) | Elp2(2i,)] - - - Elpa(2i,)],

whenever i1, ..., 4, are pairwisely different and py, ..., p, € B(X).

e A family of unital subalgebras {A; D B};cs are said to be freely independent with respect
to F if
Elay---a,] =0,
whenever i1 # iy # -+ # ip, ar € A;, and Elag] = 0 for all k. A family of (x;)icr
are said to be freely independent over B, if the unital subalgebras {A;};c; which are
generated by x; and B respectively are freely independent, or equivalently

Elp1(@i, )p2(wiy) - -~ pulzi,)] = 0,
whenever iy # iy # - -+ # iy, D1, ..., pn € B(X) and E[pg(z;,)] = 0 for all k.

e A family of unital subalgebras {A4; D B};cs are said to be boolean independent with
respect to E if
Elay - --ay) = Ela1]F]az] - - - Elay],
whenever a, € A;, and iy # i3 # -+ # i,. A family of random variables {x;};cs are
said to be boolean independent over B, if the non-unital subalgebras {A;};c; which are
generated by x; and B respectively are boolean independent, or equivalently

Elp1(ziy)p2(wiy) - - pu(i,)] = Elp1(zi,)|Elpa(2i,)] - - - Elpn(2i,)],



6 WEIHUA LIU
whenever i1 # i # -+ # i, and py, ..., pp € B(X)o.

2.2. Partitions and cumulants. All these three independence relations have rich combinato-
rial theories which we will recall in the follows. One can see [1, 10, [16] for details.

Definition 2.8. Let S be an ordered set:

1. A partition 7 of a set S is a collection of disjoint, nonempty sets V1, ..., V,. such that the
union of them is S. Vi, ..., V,. are blocks of w. The collection of all partitions o S will be
denoted by P(S)

2. Given two partitions 7, o, we say m < ¢ if each block of 7 is contained in a block of o.

3. A partition 7 € P(S) is noncrossing if there is no quadruple (si,s2,71,72) such that
51 <711 < 89 <19, 81,8 €V, ri,ro € W and V,W are two different blocks of 7.

4. A partition 7 € P(S) is interval if there is no triple (s1, s2,7) such that s; < r < so,
s1,89 € V,r e W and V,W are two different blocks of .

5. Let i = (i1, ...,1r) be a sequence of indices of I and [k] = {1,...,k}. We denote by ker i
the element of P([k]) whose blocks are the equivalence classes of the relation

s~ts iy =1

Remark 2.9. In this paper, we are interested in S = {1, ..., k} for some k € N. Tt is easy to see
that interval partitions are noncrossing.

Definition 2.10. Let (A, E : A — B) be an operator valued probability space:
1. A B-functional is a n-linear map p : A™ — B such that
p(boalbl, a2b2, ceey anbn) = bop(al, b1a2, veey bn_lan)bn

for all by, ...,b, € BU{14}.
2. For k € N, let p*) be a B-functional.
3. If B is commutative. Given 7 € P(n), we define a B-functional p{™) : A™ — B by the

formula:
p( ™ a17 vy @ H P a17"’7 )7
Ver
where if V = (i1 < i < --- <ig) is a block of 7 then
P(V)(al,--- n) =P (i, ai,).

4. Given m € NC(n), then a p{™ : A" — B can be defined recursively as follows:

p(ﬂ-) (a17 secy an) = P(W\V) (a17 .y alp(S) (al+1,...,al+s)7 al—l—s—l—la secy an)

where V = (I 4+ 1,14+ 2,...,] + s) is an interval block of .
Remark 2.11. If B is noncommutative, there is no natural way to compute p(”) (a1, ...,ay) for
m ¢ NC(n).
Definition 2.12. Let (A, B, E : A — B) be an operator-valued probability space'

1. If B is commutative, then the operator-valued classical cumulants c : A" — B are
defined by the classical moment-cumulant formula:

E[al---an]: Z cg)(al,...,an),
TE€P(n)

for all ay,...,a, € A.
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2. The operator-valued free cumulants /{%) : A" — B are defined by the free moment-
cumulant formula:

Elay---ay) = Z m(”)(al, ey Q)
TeENC(n)
for all ay,...,a, € A.

3. The operator-valued boolean cumulants bg) : A" — B are defined by the boolean
moment-cumulant formula:

Elay---ay] = Z bg)(al,...,an),
wel(n)
for all aq,...,a, € A.

Note that all these three types of cumulants can be resolved recursively, e.g.
¢ (a1) = Elai]

and

cg)(al,...,an) = FElay - ap] — cg)(al,...,an),

TEP(n),m#ly

where cg)(al,...,an) depends on cg)(al,...,an) for k =1,...,n —1if 7 # 1,,. The same, to
determine mg) and bgl) we just need to replace P(n) by NC(n) and I(n), respectively.
Theorem 2.13. Let (A, B, E : A — B) be an operator-valued probability space and (z;);cr be a
family of random variables in A:

1. If A is is commutative, then (x;);cr are conditionally independent with respect to E iff
C(En)(b()xilbl, ceey xinbn) = O,
whenever iy # i; for some 1 < k,l <n.
2. (zi)ier are free independent with respect to E iff
ng)(bomilbl, ey i by ) = 0,
whenever iy, # i; for some 1 < k, 1 <mn.
3. (zi)ier are boolean independent with respect to E iff
bgl)(b0$zl bl, ceey :L'ann) = 0,
whenever iy, # iy for some 1 < k, 1 <mn.
Proof. The classical case is well know, the free case is due to Speicher and the scalar boolean
case is due to Lehner. For completeness, we provide a sketch of proof to operator-valued boolean

case:
If 4 # 4; for some 1 < k,l < n, then there exists I such that i; # 4;+1. Therefore, we have

Z b(Eﬂ)(lebbv$ann) = E[xilbl""’$i”bn]
me€l(n)
= Elzi by, ...,z ] Bz, b, - @i, bn)

> bgl)(wilbl,...,xnbl) > bgz)(ximb“rlv"'7xinb")
mel(l) m2€l(n—1)

We see that the coefficient of bgl (24,01, ..., i, by) on the right is 0 which implies that bgl(:nil b1y eeey T, b)) =
0.
O
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Definition 2.14. Let (A, B, E : A — B) be an operator-valued probability space. Two random
variables 1,29 € A are said to be conditionally(free, boolean) i.i.d. respect to E if they are
conditionally(free, boolean) independent and have a same distribution. Suppose z1,z2 € A
are conditionally(free boolean) i.i.d. =z is said to be symmetric if z; and —z; have a same
distribution. z is said to be Gaussian (semicircular, Bernoulli) distributed if z1 and axq + B2
have a same distribution whenever «, 3 are real numbers such that a? + 82 = 1. x; is shifted
Gaussian (semicircular, Bernoulli) distributed if z; — b is Gaussian (semicircular, Bernoulli)
distributed for some b € B.

Remark 2.15. Gaussian (semicircular, Bernoulli) distribution in Definition2.14] is equivalent
to the usually definition which is also equivalent to the following cumulants definition. In
scalar case for free independence and classical independence, the tail algebra can be considered
as the commutative algebra generated by the unit of the probability space. Therefore, the
shifted constant commutes with random variables. Graphically, density functions of shifted
scalar Gaussian(Semicircular) laws are density functions of centered Gaussian(Semicircular) laws
translated by a constant. For example, the density function of the centered semicircular law
with variance 1 is

1
=4 — 32
27 v
on [—2,2], where the density function of shifted semicircular law with variance 1 are in the form
1
A — (x —a)2
5 (x —a)

on [—2 + a,2 + a]. But, for boolean independence, the tail algebra does not necessarily contain
the unit of the space. Therefore, the shifted constant may not commute with random variables.
Graphically, density functions of shifted scalar Bernoulli laws are not simply density functions
of centered Bernoulli laws translated by a constant. For example, the density function of the
centered semicircular law with variance 1 is

1/20_1 +1/263,
where the density function of shifted Bernoulli law are in the form
adg + bo_y
a+b
for a,b > 0.
Theorem 2.16. Let (A, B, E : A — B) be an operator-valued probability space, and (x;);er be
a family of random variables in A:

1. If A is is commutative, then the B-valued joint distribution of (z;);es has the property
corresponding to D in the table below iff for any m € P(n).

Cg)(bolﬂil bl, veey l’lnbn) = 0,

unless 7 € D(n) and 7 < keri where i = (i1, ..., in).

Partitions D Joint distribution

P: All partitions Classical independent

P, Partitions with even block sizes Classical independent and symmetric
Py: Partitions with block size 1 or 2 Classical independent and Gaussian

Ps: Pair partitions Classical independent and centered Gaussian
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2. The B-valued joint distribution of (z;);e; has the property corresponding to D in the

table below iff for any 7 € P(n).

IQ(EW) (bol’il bl, ey L bn)

unless 7 € D(n) and 7 < keri.

=0,

Partitions D

Joint distribution

P: Noncrossing partitions

P,,: Noncrossing Partitions with even block sizes
PBy: Noncrossing Partitions with block size 1 or 2

P,: Noncrossing Pair partitions

Free independent

Free independent and symmetric

Free independent and semicircular

Free independent and centered semicircular

3. The B-valued joint distribution of (z;);e; has the property corresponding to D in the

table below iff for any m € P(n).

bg)(bolEzl bl, ceey l’lnbn) = 0,

unless 7 € D(n) and 7 < keri.

Partitions D

Joint distribution

I: Interval partitions

Iy Interval partitions with even block sizes
Ip: Interval partitions with block size 1 or 2
I5: Interval pair partitions

Boolean independent
Boolean independent and symmetric
Boolean independent and Bernoulli

Boolean independent and centered Bernoulli

Proof. These results are well know for free case and classical case. For boolean case, one just
need to follow the proof for free case and replace noncrossing partitions by interval partitions. [

3. NONCOMMUTATIVE SYMMETRIES

In this section, we will recall distributional symmetries for classic independence are free inde-
pendence from [3].

Definition 3.1. An orthogonal Hopf algebra is a unital C*-algebra A generated by n? selfadjoint

elements {u; ;|i,7 = 1,...,n}, such that the following hold:

t

1. The inverse of u = (u;;)ij=1,.n € My(A) is the transpose u' = (u;;)ij=1,.n, i.€.

n n
Do Ui gUj g = Y Uk Uk = 0;la.
k=1 k=1

n

2. Auiy) = wi ) ® ug ; determines a C*-unital homomorphism A : A = A ®ip A.
k=1

3. €(u;,7) = du; j defines a homomorphism e : A — C.

4. S(u;j) = uj,; defines a homomorphism S : A — AP,

This definition adapted from the fundamental work of Woronowicz|24]. Following the notion
of Wang’s free quantum groups in [21, 22], one can define universal algebras A generated by n?
noncommutative variables {u; ;}; j—1,. » which satisfy some relations R. Moreover, for suitable
choices of R, we will get Hopf algebras in the sense of Woronowicz[24].

In [3], Banica and Speicher found the following conditions which can be used to construct
Hopf orthogonal algebras:
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Definition 3.2. A matriz v = (u; ;)i j=1,...n € My(A) over a C*-algebra A is called:

e Orthogonal, if all entries of u are selfadjoint, and uu® = u*

e magic, if it is orthogonal, and its entries are projections.
o cubic, if it is orthogonal, and w; ju; ), = u;jug; = 0, for j # k.

u =1y,

n n
bistochastic, if it is orthogonal, and Y w;; = Y uk; = 1a, for all j, k.
i=1 j=1
magic’,if it is cubic, with the same sum on rows and columns.
bistochastic’,if it is orthogonal, with the same sum on rows and columns

The universal algebras associated with the above conditions are defined as follows:

Definition 3.3. A (n) with g = o0,s,h,b,s,s',0 is the universal C*-algebra generated by the
entries of a n X n matriz which is respectively orthogonal, magic, cubic, bistochastic, magic’ and
bistochastic’. Cy(n) with g = o,s,h,b,s,s', b is the universal commutative C*-algebra generated
by the entries of a n X n matriz which is respectively orthogonal, magic, cubic, bistochastic,
magic’ and bistochastic’.

Especially, for each n, As(n) and A,(n) are Wang’s quantum permutation group and quantum
orthogonal group introduced in 22, 21]. Cy(n) can be considered as the abelianization of Ag(n)
for all g = 0,s,h,b,s,s,b. It should be mentioned here that there are 7 easy quantum groups
in total, see [23].

According to the definitions, we have the following diagram:

Ao(n) I Ab/ (n) —_— Ab(n)

L

Ap(n) —— Ag(n) —— Aq(n)
and

Col(n) — Cb/l(n) — ijn)

Ch(n) —= Cy(n) — C4(n)
and

Ag(n) - Cg(n)a
for g = o0,s,h,b,s,s',b/. Here, the arrow means that there exists a morphism of orthogonal Hopf
algebras (A,u) — (B, v) which is a C*-homomorphism fromA to B such that w; ; — v; ;. In
other words, (4,u) — (B,v) implies that B is a quotient C*-algebra of A. We will use B C A
for (A,u) — (B,v).

Proposition 3.4. Let E(n) be an orthogonal Hopf algebra generated by n? selfadjoint elements
{uivj}i,j:17.__7n, then

1. If E(n) ¢ Ap(n), then there exists a j such that ui’j # 1g(n)-
k=1

2. If E(n) ¢ Ay(n), then there exists a j such that ) upj # 1p(m)-
k=1

n n
Proof. 1. Suppose kzl ui’i = 1g(n), for all 7. Since Zl u%z = lg(n) and U%J < uiﬂ., we have
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(%2 j)i,j=1,...,n is a matrix of orthogonal projections with sum 1 on rows and columns. Therefore,

2 .2 2,2
ug Uy g = uj g, =0
for j # k. Since u; ; and wu; j, are selfadjoint, we have
Ui Ui = UjiUk; =0
which implies that E(n) is a quotient algebra of Ay (n). It is a contradiction.
n

2. Suppose ) ug; = lg(n), for all 4. Then, for each i, we have

k=1
n n n n n n
D=3 uiupg =YY uiups =Y iklpm) = Lem).
=1 =1 k=1 k=1 1=1 k=1
Therefore, F(n) is a quotient algebra of Aj(n) which leads to a contradiction. O

Proposition 3.5. Let E(n) be an orthogonal Hopf algebra generated by n? selfadjoint elements
{wij}ij=1,.n such that As(n) C E(n) C Ay(n). Then, the following hold:

1. If E(n) C Ap(n) and E(n) C Ap(n), then E(n) = Ag(n).
2. If E(n) ¢ Ap(n) and E(n) C Ap(n), then 3¢’ such that

n
E m
uk,i’ 75 17
k=1

for allm > 2.
3. If E(n) ¢ Ap(n) and E(n) C Ap(n), then 3i’ such that

Z qui’ 75 17

=1

el

for all odd numbers m.
4. If E(n) ¢ Ap(n) and E(n) ¢ Ap(n), then 34}, 12 such that

> Uy # 1,
k=1
for allm > 2, and

n
Z uk:,i/z 7é 17
k=1

Proof. 1t is obvious that ||u; ;|| <1 for all 4,5 =1,...n.
1. By assumption, we have
n
Z Uik = Lpn)
k=1

and
ui,jui,k =0
for j # k. Therefore,

n
oy . 2
Wi,j = Wi Uik = Uj
k=1

for all 4, j. It implies that F(n) is a quotient algebra of As(n), so E(n) = As(n).
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2. By Proposition [3.5] there exists ¢ such that

n
Zuiﬂ'/ 7é 1.
k=1

Therefore, there exists k' such that
4 2
u‘k’,i’ < u‘k’,i’
which implies that the spectrum of w ;» contains a number a such that —1 < a < 1. Therefore,
U/];n/l’i/ < Ui/’i/

for all natural number m > 2. Hence, we have

n
D Uiy < Lo,
k=1

for m > 2.
3. According to Proposition B3], there exists i’ such that

n
Zuk,i’ # 1.
k=1

Therefore, there exists &’ such that uy ; is not an orthogonal projection which implies that
uif’"fl < u%f”zl

Thus, we have
n n n
2m+1 2m __ mo
Zuk,i’ < Z Up it = Zu,“ = 1g(n)
k=1 k=1 k=1

4. Combine Case 2 and 3, the proof is complete. O
Following the proof above, we have

Corollary 3.6. Let E(n) be an orthogonal Hopf algebra generated by n® selfadjoint elements
{wij}ij=1,.n such that Cs(n) C E(n) C Cy(n). Then, the following hold:

1. If E(n) C Ap(n) and E(n) C Ap(n), then E(n) = Ag(n).
2. If E(n) ¢ An(n) and E(n) C Ap(n), then 3i' such that Y u}l'y # 1, for all m > 2.
k=1 "

3. If E(n) ¢ Ap(n) and E(n) C Ap(n), then 34’ such that > up’, # 1, for all odd numbers
m. h= .
4. If E(n) ¢ Ap(n) and E(n) ¢ Ap(n), then 34}, ia such that 3 u’k”i,l # 1, for all m > 2,
k=1 "

n
and E uk,ié 75 1,
k=1
Now, we turn to define noncommutative distributional symmetries by maps of quantum family
of Sottan|15]:

Definition 3.7. Let (A, A) be a quantum group and V be a unital algebra. By a (right) coaction
of the quantum group A on V, we mean a unital homomorphism « : V — V ® A such that

(a®idyg)a = (id @ A)a.
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Definition 3.8. Given an orthogonal Hopf algebra F(n) generated by {u; ;}i j—1,.n, we have a
natural coaction «a,, of E(n) on C(X4, ..., X},) such that

n:C(Xq, .. X)) = C(Xq, ..., X)) @ E(n)
is an algebraic homomorphism defined via o, (X;) = Zk 1 X @ug, foralli =1,.

Definition 3.9. Given a probability space (A, ¢), a sequence of random variables (ml, ey Tp)
of A and an orthogonal Hopf algebra E(n) generated by {w; ;}ij=1,.n. We say that the joint
distribution piz, . 4, of z1,..., 2, is E(n) invariant if

Bar,eozn (P)LE() = Har,....zn @ idE(n) (an(p)),
for all p € C(X1, ..., Xp).

Remark 3.10. Noncommutative distributional symmetries, which are associated with E(n)
such that Ay C E(n) C Ay,(n)(Cs C E(n) C Cy(n)), will be used to characterize free(classical)
type de Finetti theorems.

Proposition 3.11. Given a probability space (A, ¢) and a sequence of random variables (z1, ..., ;)
of A. E(n) and F(n) are two orthogonal Hopf algebras such that E;(n) C Ea(n). Then,
(1, ..., y) is E1(n)-invariant if Ea(n)-invariant.

Proof. Let {uglj)}uzln be generators of Ej(n) for [ = 1,2. Since Eq(n) C Es(n), there exists a
C*-homomorphism ® : Ey(n) — Ej(n) such that

2 1

q)(uz(,j)) = UEJ)

for all i,5. (z1,...,25) is Ea(n)-invariant is equivalent to that

2
Nx1,...,xn 1E2(n Z Haz,.. ,xn ® 53)7
J€[n]*
for all monomials Xj, --- X;, € C(Xj,...,X,,). Apply ® on both sides of the above equation, we
get
1
lu’wly---,wn(Xi)]‘El(n) = Z lu’ivly---,wn(XJ) ® (,_])7
JE[n]*

which implies that (x1, ..., 2, ) is E1(n)-invariant. O

Given an orthogonal Hopf algebra E(n) generated by {u; ;}i j=1,. n. Then , for k € N, E(n)
can be considered as an orthogonal Hopf algebra E(n, k) generated by {v;, j}i,j:17...7n+k such that

o Us 5 if Z,j <n
YVig = { 0ijlp@m) otherwise
We will call E(n, k) the k-th extension of E(n). To study de Finettil theorems for all orthogonal
Hopf algebras FE(n), we need to extend FE(n)-invariance condition on n random variables to
infinitely many random variables.

Definition 3.12. Given a probability space (A, ¢), a sequence of random variables (z;);en of
A and an orthogonal Hopf algebra E(n) generated by {u;;}ij=1,.n. We say that the joint
distribution p of (x;)ien is E(n) invariant if the joint distribution of (zy,...,zp1%) is E(n,k)-
invariant for all £ € N.
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4.(QUANTUNISENHGROUPSIN<ANALOGLWIOF EASY QUANTUM GROUPS

Inspired by the previous work in [11], we will define distributional symmetries for boolean
independent random variables via quantum semigroups. We briefly recall quantum semigroups’
definition here: For any C*-algebras A and B, the set of morphisms Mor(A, B) consists of all
C*-algebra homomorphisms acting from A to M(B), where M (B) is the multiplier algebra of
B, such that ¢(A)B is dense in B. If A and B are unital C*-algebras, then all unital C*-
homomorphisms from A to B are in Mor(A,B). In [15],

Definition 4.1. By a quantum semigroup we mean a C*-algebra 4 endowed with an additional
structure described by a morphism A € Mor(A, A® A) such that

(A®idg)A = (idg @ A)A.

The quantum semigroups for boolean independence are unital universal C*-algebras generated
by an orthogonal projection P and entries of n x n matrices which satisfying certain relation R
related to P:

Definition 4.2. Let u = (u; ;)i j=1,..n € Myp(A) be an n x n matrix over a C*-algebra A and
P be an orthogonal projection in A, the pair (u,P) is called:

1. P-orthogonal, if all entries of u are selfadjoint, and wu'P = u'uP = 1, ® P i..
n n
> wikuj kP = 30 upup P = 6 ;P.
k=1 k=1

2. P-magic, if it is f’—orthogonal, and the entries of u are projections.
3. P-cubic, if it is P-orthogonal, and u; ju; 1P = u;;u; P = 0, for j # k.
n n
4. P-bistochastic, if it is P-orthogonal, and ) u; ;P = ) u, ;P = P, for all j, k.
=1 =1
. . J J
5. P if Y ;P =) w P, for all j, k.
=1 i=1

J Jj=
6. P-magic’, if it is P-cubic and P-’

7. P-bistochastic’,if it is P-orthogonal and P-’

Unlike the situation in quantum groups, these conditions cannot define universal C*-algebras
since they cannot ensure that u; ;’s are bounded. Therefore, we need an additional condition to
control the norms of u;’js. We say (u;;)i=1,.n is norm < 1 if the norm ||(u; ;)i j=1,. x| of the
matrix is <1

Definition 4.3. By(n) with g = 0, s, h,b, s, s’,b is the unital universal C*-algebra generated by
the entries of a n x n norm < 1 matrix (u;;);=1,., and an orthogonal projection P which is
respectively P-orthogonal, P-magic, P-cubic, P-bistochastic, P-magic’ and P-bistochastic’.

On the C*-algebra B,y(n) with g = o,s,h,b,s,5, b/, we can always define a unital C*-
homomorphism

A: By(n) = By(n) ® By(n)

by the following formulas:

Auhj::§:1qké§uhj
k=1
and
AP=P®P, AI=I®]I.
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To show the coproduct is well defined, we need the show that the (Aw; ;)i j=1,.n» and P® P
satisfy the universal conditions as (u; )i j=1,...n» and P do:
Norm condition: If ||(u; ;)i j=1,.n| <1, we have

n
(A )i =1, nll = 1O wik@ui )ij=1,..nll = | (Wi ;&10)i =1, n(In@ui )i j=1,. all < [(wis)ij=1,.al® < 1.
k=1

n n
P-orthogonal: If > u; ,u; ;P = > upup ;P =9 jP, then
k=1 k=1

NgE

Aui,kAuj7kAP

(

B
Il
—

Il
NgE
NgE

n
Ui @ upk)( Y Ujm @ Umk) (P @ P)
m=1

e
Il
—_
—
Il
—

Ui UG m P @ g Uy, P

b
Il

—
—~
Il

—
—

I Il

M=T s

NENRNSE
s

u,-Juj,mP ® 5mle

~

3
M
3
Il
-

I
I
U =
® Z
IS
w
&
as)

n

The same we have ) Auy;Auy ;AP =6, ;P @ P.
k=1
P-cubic: Since u; ju; ;P = u;;u; P = 0, for j # k, we have

Aui,jAui,kAP
n
= > U UimP ® Ut P

I,m=1
n

= Z UMUMP & uuuhkP
=1
= O7

whenever j # k. Then same, we have
AUj7Z'AUj7kAP = 0,

whenever j # k.

n n
P-bistochastic: If ) u; ;P = > u;;P =P, forall j =1,...,n.
j=1 j=1

NsE
>
P
=

I
M=
M=
£
El

w
%y

<
ol

7‘P

<

Il
=
>

Il
—

[l
[ives
g
e
&®

]ﬁ

I

w
®
w
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The same we will have )" Au;; AP =P @ P, for all j.
j=1

n n
P’ -condition: Letr =) u;;P =) u;,P, for j # k.
j=1 j=1

n

Z Aui,jAP
j=1
n
= > uyP®u, P
.77l:1
n
= Y u /Por
=1
= rer,

n
for all j. The same we will have ) Au; ;AP =r ®r for all j.
j=1
Therefore, A is a well defined C*-homomorphism and (B, (n), A) with g = o, s, h, b, s, s', b are
quantum semigroups. As the relation for easy quantum groups, we have the following diagram
for boolean quantum semigroups:

Bo(n) —_— Bb/ (n) —_— Bb(n)

L

Bj(n) — By (n) — Bs(n)

We can see that easy quantum groups could be quotient algebras of these easy quantum semi-
groups with requirement of P = 1. The algebras B,(n) generated by the generators of By(n)
with g = o, s, h, b are quotient algebras of Hayase’s Hopf algebras C(G2), C(GL), C(Glr),C(Gl)
in [7], respectively. Actually, By(n) with g = o, s, h,b satisfy Hayase’s universal conditions for
C(GE),C(GE),C(GIr),C(GE). To check the some vanishing conditions, we need the following
notation for convenience: Given m; € I(k1) and my € I(ky), @ = mime € I(k1 + k2) denotes
the concatenation of m; and m9. Given j; = (j1,...,Jx,) € 2] and jo = (J1s -5 dpy) € [n]~2,
J =132 = Gty s Gy s G s Gy ) € []F1TR2
According to Definition 2.8] it is obvious that

Lemma 4.4. Let m € I(k; + k2) such that 7 = w7 for some 71 € I(ky) and w9 € P(kz). Let
j=3j1 +j2 such that j; € [n]* and jo € [n]*2. Then, 7 < kerj iff m; < ker j; for i = 1,2.

Therefore ,we have the following:
Lemma 4.5. Given 7 € I(k;), m2 € P(k2) and j = j; + j2 such that j; € [n]* and jo € [n]*2.
If
| P ifm <kerj;
Z Ui P = { 0 otherwise
i;€[nki],m;<keri;
for ¢ = 1,2. Then, we have

| P ifm <kerj
Z ui P = { 0 otherwise

i€[nF1tk2] myma<keri
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Proof. By a direct computation, we have:
Z ui1,j1P if 1 S kerjg

E P = E E A - g ir€[n*1]
u; P = Usy j; Uip jo P = 7 <ker i

ie[nk1tk2) ire[nf1] isenk2) 0 otherwise
mmo<keri 71 <keri; mo<keria
Therefore,
Z wpd = P m <kerjiandms < ker jo
1 0 otherwise ’
ic[nk1tk2]
mmo<keri
which completes the proof. O

Now, we can turn to check a vanishing condition:
Lemma 4.6. Let u; ;’s and P be the standard generators of B,(n),Bs(n),Bp(n),By(n). Then,
we have
| P ifm<kerj
Z ui P = { 0 otherwise
ie[nk],r<keri
for m € Iy(k), I(k), In(k), In(k), respectively.
Proof. 1. For B,(n), k = 2. The identity holds by the definition of B,(n). Since all partitions

in Is(n) are concatenations of pair partitions by Lemma [4.5] the identity is true.

2. For By(n), the identity holds by the definition of By(n) when 7 is a single partition or a
partition. Since all partitions in I(n) are concatenations of single partitions and pair partitions,
by Lemma [4.5] the identity is true.

3. For By (n) we just need to check m = 1gy, € I}(2m) for all m € N. It follows that

n
D WP = iy, P
i=1

ie[n]?™
m<keri

It equals zero if j; # ji41 for some [, otherwise

n n
2 : § : § : 2m—2 § : § : 2m—2 _ § : 2 _
uivjl u17]2mP U, ]1P uz J1 U ]1P ul J1 P= - ul,j1P =P.
=1 =1

Since all partitions in Ib(n) are concatenations of blocks of even length, by Lemma E35] the
identity is true.

4. For Bs(n) we just need to check m = 1,, € I(m), for all m € N. It follows that

E : ui P = E :uwl' Ui j,, P

ie[n|™
mw<keri

It equals zero if j; # ji41 for some [, otherwise

n n
m—1lp _ _ _
Zui,jl ’ ul,]mP Zuz ]1P Zuz J1 Zul,]lp Zuz J1 P = - ZulJlP =P.
1=1 =1
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Since all partitions in [(n) are concatenations of blocks of arbitrary length, by Lemma [4.5] the
identity is true. U

Now, we define noncommutative distributional symmetries for boolean independence in gen-
eral:

Definition 4.7. An orthogonal boolean quantum semigroup is a unital C'*-algebra A generated
by n? selfadjoint elements {u;;|i,j = 1,...,n} and an orthogonal projection P, such that the
following hold:

1. w=(ujj)ij=1,..n € Mp(A) is norm< 1 and (u,P) is P-orthogonal.
n
2. Auij) = Y Ui ®up; and AP =P P, Al = I ®I determine a C*-unital homomor-
k=1
phism A : A — A Qumin A.

Definition 4.8. Let (A, A) be a quantum semigroup and V be a unital algebra. By a right
coaction of the quantum semigroup A on V, we mean a unital homomorphism o : V = V® A
such that

(a®idg)a = (id @ A)a.

Definition 4.9. Given an orthogonal boolean quantum semigroup F(n) generated by {u; ;}i j—1,...
and P, we have a natural coaction «,, of F(n) on C(Xy,..., X,,) such that

an : C(X1,...,Xpn) —» C(Xyq,..., Xp) ® E(n)
is an algebraic homomorphism defined via oy, (X;) = > ") Xi ® ug; for all 4.

Definition 4.10. Given a probability space (A, ¢), a sequence of random variables (z1, ..., zy)
of A and an orthogonal boolean quantum semigroup E(n) generated by {u;;}; j=1..n and P.
We say that the joint distribution pig, . 4, of z1,...,2y is E(n) invariant if

Nxh...,xn(p)P = Hzq,...xn & ZdE(n) (an(p))P7
for all p € C(X1, ..., X},).

The same as matrix quantum groups, we can define E(n) invariance condition for infinite
sequences. Given an orthogonal boolean quantum semigroup E(n) generated by {w; ;}ij=1,.n
and P then , for k € N | F(n) can be considered as an orthogonal boolean quantum semigroup
E(n, k) generated by {v;;}ij=1,. ntr and P’ such that

U'__{ui,j ifi,j <n
" Gijlem) otherwise

and P’ = P. We will call F(n, k) the k-th extension of E(n).

Definition 4.11. Given a probability space (A, ), a sequence of random wvariables (x;);en €
A and an orthogonal Hopf algebra E(n) generated by {u;;}ij=1,..n. We say that the joint
distribution p of (x;)ien is E(n) invariant if the joint distribution of (x1,...,Xn1r) is E(n,k)-
invariant for all k € N,

Proposition 4.12. Let (A, B, E : A — B) be an operator valued probability space and {x;}i=1,. n
be a sequence of random wvariables in A. Let ¢ be a linear functional on A such that ¢(-) =
d(E[]). Then, in probability space (A, ¢), we have
o If {zi}i=1,. n is identically distributed and boolean independent with respect to E, then
the sequence is Bg-invariant.
o If {xi}i=1,. n is identically symmetric distributed and boolean independent with respect
to E, then the sequence is By-invariant.
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o If {x;}i=1,.. n has identically shifted Bernoulli distribution and is boolean independent
with respect to E, then the sequence is By-invariant.

o If {zi}i=1,.. n has identically centered Bernoulli distribution and boolean independent
with respect to E, then the sequence is B,-invariant.

Proof. Suppose that the joint distribution of {x;};=1, ., satisfies one of the conditions specified
in the statement of the proposition, and let D(k‘) be the partition family associated to the
corresponding quantum semigroups. Let Xj = X, --- X, , by Lemma [4.6] and 216, we have

Py ,...en (O (X)) P = %:]k Py ... (Xi )i P
ie[n]k
= Z ¢(x1)u1J
ie[n]k
= Y o [‘Tl])ulj
i€n]k

= ¥ X o0 (@)uiP

ie[n]k meD(k)

= Y Y 607 (@)uP

weD(k)i€[n]k

= XX o0 @)uP
weD(k) ie[l?]k
m<keri

- Z Z (b(bg)(azl,...,xl))ui,jP
weD(k) ie[l?]k
n<keri

= 3 WD (@, .., 21))P
weD(k)
m<kerj

= Y ¢ ()P
meD(k)
n<kerj

= ¢(Elz;))P
= &(z)p
= le,...,:cn(Xj)Pa
which completes the proof. O

5. MAIN RESULT

In this section, we will prove Theorem 1. Then, we will present an application of our main
theorem to easy quantum groups Cy(n), Cy(n), Ag(n), Ay(n) , Ayx(n) and By (n), By(n).

5.1. Proof of the main theorem. The proof of free case is the most typical, we list it below:

Free case: In a W*-probability space (A, ¢) such that ¢ is faithful. Let {E(n)},en be a
sequence of orthogonal Hopf algebras such that As(n) C E(n) C A,(n) for each n. Let (z;)ien
be a sequence of random variables which generate A. Suppose that the joint distribution of
(zi)ien is E(n) invariant for all n. By Proposition B.11] (x;);cn are Ag(n) invariant for all n. By
Kostler and Speicher|9], there are a W*-subalgebra 1 C B C A and a ¢-preserving conditional
expectation E : A — B that (x;);en are freely independent and identically distributed with
respect to E. It proves the statement 1 for free case. In addition, By Proposition 4.3 in [9]
and Definition B.12] the coaction invariant condition for ¢ can be extended to the conditional
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expectation E, i.e.
n
E[boxilbl e bk—lxikbk] & 1E(n) = Z E[bolebl e bk_lxjkbk] & Ujy iy * Uy i
JiseenJk=1
for i1, ...,1 < n, where u; ;’s are generators of E(n).
2. Suppose that Ag(n) C E(n) C Ap(n) for all n and there exists a k such that E(k) # A(k).
Let {u;j}ij=1,.%’s be generators of E(k). By proposition 3.5l 3¢’ such that

k
D> il # 1,
=1

for all m > 2.

Without loss of generality, we assume that i = 1. In order to finish the proof, we need to
show that kj(x1b1,....,21b;) = 0 for all [ > 3, where by,....,b; € B. We prove this by induction
on [. First, we have that

E[:Elbl s l‘lbl] &® 1E(n)

= Z E[xilbl s xilbl] ® ui71
ic[k]!

= > > Re(ibi, ez b) @uig
i€[k]! TENC()

= Yo > Ba(@ibi, e xi b)) @ ugg + > Y Br(@i b1,y i by) ® uin
TeNCy (1) ic[k]! TeNC(I)\NCy (1) ie[k]!
= Z Z /iw(a;ilbl,...,xilbl) QUi+ Z Z /fﬂ(xilbl,...,xilbl)(@um
TENCy(1) iel[(k]l TeNC()\NCy (1) iel[{k]l
mw<keri n<keri
= > Y kx(w1by, . 1by) @ uiy + > Y. kr(@ibi, .. 21b) @ Uiy
TENCy(1) ic[k]! TeNCH\NCy (1) ie[k)!
mw<keri n<keri
= > Er(ziby, . w1by) @ 1pe) + > Y. Br(xibi, . z1by) @ ugg.
TeNCy(1) TENC(\NCy(1) ie[k)!
m<keri

The first term of the last equality follows that E(n) is a quotient algebra of Ay(n). On the other
hand

E[l‘lbl,...,$1bl]®1E(n) = Z /{W(:Elbl,...,l‘lbl)@lE(n)—l— Z /fw(fﬂlbla---,xlbl)@lE(n)-

TENCy(k) TENC()\NCy (1)
Therefore,
(1) Z Z Kr(x1by, ..., 21by) @ uy g = Z K (2101, s 2101) @ 1)
TeNC(O\NCy(1) ielk])! TeNC()\NCy (1)
mw<keri

When [ = 3, we have NC(3) \ NCy(3) = {13}, then

Z Kl (:Elbl, ...,$1b3) Ruil = /{13(l‘1b1, ...,:Elbg) ® 1E(n)y

i€[n]*
nw<ker 13

which is

k
/{13(l‘1b1, ey T1bg) ® (Z u?’l — 1E(n)) =0.
=1

Therefore, ri,(x1b1,...,21b3) = 0. Suppose ki,(z1b1,...,x10;) = 0 for 3 < | < m, then for
T € NC(m+1), £r(xi,b1, ..., 1bymy1) = 0 if 7 contains a block whose size is between 3 and m.
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Each partition 7 € NC(m + 1) \ NCy(m + 1) contains at least one block whose size is greater
than 2. Therefore, for m € NC(m+ 1)\ NCy(m + 1), kz(21b1,...,x1b;) = 0 if ™ # 1,,,11. Hence,
equation [I] becomes

E +1
/ﬁ:lm+1(£1b1,...,xlbm+1 um - 1E =0

which implies
H1m+1 (‘le:l? ey xlbm_;’_l) = O7

for all by, ..., 0,41 € B. The proof is complete.

3. Suppose that As(n) C E(n) C Ap(n) for all n and there exists a k such that E(k) # As(k).
Let {w;;}ij=1,..'s be generators of E(k). By proposition B35, 34 such that

k
m
Z ul,i’ 7é 17
=1

for all odd numbers m.

Without loss of generality, we assume that i’ = 1. We need to show that ki (x1b1, ....,z1b;) =0
for all add numbers k£ where by, ....,b; € B. Agian, we prove this by induction on .
We have that

E[:Elbl cee l‘lbl] ® 1E(n)

= Z Z /iw(azlbl,...,xlbl) Quil + Z 2 /iw(azlbl,...,xlbl) ® uj1
TeENCHL(I) ie[lﬂl TeENC()\NC (1) ie[lﬂl
w<keri mw<keri
= Z Iiﬁ(ﬂjlbl,...,iltlbl)@lE(n) + Z Z /ﬂﬂ($1b1,...,ﬂj1bl)®ui71
TENC(I) TeNC(I)\NCr(I) ie[k]!
mw<keri

The first term of the last equality follows that E(n) is a quotient algebra of Aj(n). On the other
hand, we have

E[$1517-~-,$1bl]®1E(n) = Z /iﬂ(xlbl,...,mlbl)@)l];(n)—i- Z Hw(xlbla---,xlbl)@’l]ﬂ(n)-

TENCy(1) TENC()\NCh (1)
Therefore,
(2) Z Z H,T(xlbl,...,xlbl)@)uu = Z Hﬂ(xlbl,...,xlbl)@) 1E(n)
reNC\NCy (1) ie[k)! rENC()\NCy (1)
mw<keri

When [ =1, we have NC (1) \ NCp(1) = {11} then

a;lbl Zul 1 — 1E(n = 0.

Therefore, k1, (x1b1) = 0. Suppose £y, (mlbl,...,azlbl) = 0 for odd numbers I < 2m, then for
™€ NC(2m+ 1), kz(xiy b1, ..., x1b2m41) = 0 if © contains a block whose size is an odd number
less than 2m. Each partition 7 € NC(2m + 1) \ NCy(2m + 1) contains at least one block
whose size is odd. Therefore, for 1 € NC(2m + 1) \ NCyp(2m + 1), Kr(21b1, ..., x1b2m+1) = 0 if
7w # lopr1. Hence, equation 2] becomes

2m+1 _
Klgmar (1015 oy T1b2my1) @ Eu —1gm) =0
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which implies
Klpir (101, oy £10pp1) = 0,

for all by, ...,bm+1 € B. The proof is complete.

4. If there exist ki, ko such that E(k1) € Ap(k1) and E(ko) € Ap(ks), by Case 3 and 4, the
only non-vanishing cumulants are pair partition cumulants. The proof is done.

Classical Case: The proof is almost the same as free case, we just need to replace noncrossing
partitions by all partitions.

boolean Case: The proof is a little different. Some properties of boolean conditional ex-
pectation are discussed in [11], [7]. As it is shown in [11], for boolean de Finetti theorem, we
need to consider random variables in W*-probability space with a non-degenerated state (A, ¢).
Assume that A is generated by a sequence of random variables (z;)ien. Let {E(n)}nen be a
sequence of orthogonal boolean quantum groups such that Bs(n) C E(n) C B,(n) for each n.
If the joint distribution of (x;);en is E(n) invariant, then the joint distribution of (x;);en is
Bs(n) invariant for all n. By the main results in [11], there are a W*-subalgebra(not necessarily
contain the unit of A) B C A and a ¢-preserving conditional expectation £ : A — B such that
(x;)ien are boolean independent and identically distributed with respect to E. In this part of
proof, we will assume that B does not contain 1 4. It should be pointed out that the case that B
contains the unit of A is always a unitalization of the case that B does not contain 1 4. Under
our assumption, the tail algebra

o0
B =) W*{ailk > n},
n=1
where W*{xp|k > n} is the WOT closure of the non-unital algebra generated by {zy|k > n}.
We call B the non-unital tail algebra of {x;};cn. Unlike the proof of free and classical case, the
coaction invariant condition for ¢ can be extended to the conditional expectation E directly.
Actually, we have a stronger statement.

Proposition 5.1. Let (A, ¢) be a W*-probability space and (x;);en be an infinite sequence of
selfadjoint random variables which generate A as a von Neumann algebra and the unit of A is
contained in the WOT closure of the non-unital algebra generated by (z;)ien . Let E(n) be a
sequence of boolean orthogonal quantum semigroups such that Bs(n) C E(n) C By(n). If (z)ien
is E(n) invariant for all n, then there exists a ¢-preserving conditional expectation E : A — B,
where B is the non-unital tail algebra of {x;}ien, such that (x;);en is boolean independent with
respect to E. Let A, be the non-unital algebra generated by {x;}ien. We have that

E[al bag] = E[al]bE[ag],

where ai,az € Ay, for somen and b € B. Let {u; j}i j—1,..n be generators of E(n). We will have
that

n
E[xh o xlk] QP = Z E[xﬁ T ‘Tjk] ® Ujy iy Uiy i, P
J1senJi=1
foriq, ..., i <n.

Proof. The existence of E is prove in [11]. We will just need to prove the last two equations.
Given a1,a9 € A, for some n and b € B, by assumption, b is contained in W*-closure of the
non-unital algebra generated by {x;|¢ > n}. By Kaplansky theorem, 3 a sequence of bounded
elements y; such that y; is contained in the non-unital algebra generated by {z;|i > n} such that
y; converges to b in strong operator topology. Therefore, by normality of F, we have

Elaibas] = Zliglo Ela1yias] = Zliglo Ela1]Ely;|Elas] = Ela1]bE|as],
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where the second equality follows the fact that (z;);en are boolean independent with respect to
E. The second equation can be checked pointwisely. Let a1,as € A, for some m. In [11], we
showed that there exists a normal homomorphism a : A — A such that a(x;) = x;41 for all
i € N. By the proof of Lemma 6.7 in [11] and the assumption that {z;}ien is E(n)-invariant,
we have
d(a Elxy, -+ xi]ag) @ P
= lim  ¢(ara(zi, -2, )az) @ P

l—o0,l>m
= lim  ¢(a™(ar)xi, -z, (az)) @ P
l—o0,l>m
n
= lim (¢(an(a1) Z Ljy - :Ejkan(a?)) & Uy iy * ujk,ikP
l—o0,l>m J1eji=1
n
= lim ¢(a1al( Z Ljy+e $jk)a2) @ Uy iy * ujk,ikP
l—o0,l>m J1yengie=1
n
= Z qb(alE[le "'xjk]a2) & Ujy iy "'ujmikP
Jiyenjr=1
Since aq,as are arbitrarily from the sense set |J A, of A, the proof is done. O

n—o0

Now, we turn to finish the proof of our main theorem for boolean case:
1. This is just the boolean de Finetti theorem in [11].

2. As the free case, we need to show that b%)(:nlbl, wery1by) = 0 for all [ > 3 where by, ....,b; €
B U{C14}. By proposition 5.1} we have
Bl biws, -+ - bp174,,]
= Elwy b1 Elzi,] - bp-1Elw,, ]
E b(E7r1)($i§1)’ T (1) )by Z b(E7r2)($l.§2), "':Ei](f)) cobp_1 Z bgm)(l‘igm), ...l‘i(m))
°2

miel(kr) ky mo€l (ko) Tm €1 (km) km
™
= > b(E)(xiu), T, DIT @) T 2)s B 1T () s T om))
rel (k)X I (kz) %+ I (km) 1 ki 1 ky 1 km
where i} = (igl),...,i,(jl)) € [n]* for all | = 1,...,m for some n and by, ...,b,, € B. Therefore, to

finish the prove, we just need to show that bg) (1, ....,21) =0 for all I > 3. The rest of the poof
is almost the same as the free case:
Let {u; }ij=1,.%'s and P be generators of E(k). First, by Proposition 5.1 we have

Elz1--2]® P
= Z E[xl] X uiJP
ielk]t
= ¥ ¥ i@ eu
ielk])l mel(l)
= Y Y@y, r)ouaP+ Y Y 0 (i, ) © Uy P
rel (1) ic[k]! reI(O\Ly (1) i€[k]!
= Z Z bg) (33‘2‘1, ey ﬂj‘il) &® uile + Z Z bg) (33‘2‘1, ey ﬂj‘il) ® ui71P
wely(l) iel[(k]l mel()\Iy(1) iel[{k]l
w<keri n<keri
= Y 2 W@, ) @uP+ Y 8 (2, 11) @ ug P
melp(l) iclk)t rel(D\I(1) ie[k)!
w<keri mw<keri
= Z bg)(xlbl,...,xlbl)®P+ Z Z bg)(xl,...,x1)®ui71P.
r€l (1) mel(IN\I(1) ielk]!

mw<keri
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The first term of the last equality follows that E(n) is a quotient algebra of By(n). On the other
hand

Elry,z]@P = > 0P (z1, ) 9P+ Y b (21, 21) @ P

nel, (k) WSIONAG)
Therefore,
(3) S Y ey euwiP= Y b (@1, a) @ P
mel(D\I(1) ie[k])! rel()\Ip(1)
mw<keri

By assumption, (k) has a quotient algebra E'(k) that As(k) C E'(k) C Ay (n). Let {u; ;}'s be
the generators of E'(k). Then, there exists a C*-homomorphism ¥ : E(k) — E’(k) such that

U(u; ) = u;] for all 4,5 =1,....,k, and ¥(P) = 1p ).

Without loss of generality, by proposition B.5 we can assume that

k
douli #1,
=1

for all m > 2. Let id ® ¥ acts on equation [4l Then, we get

(4) Z Z bg)(xl,...,xl)@)u;’l = Z bg)(xl,7x1)®1El(k)
rel(D\Ip (1) ic[k)! rel(H\Ip(1)
mw<keri

When | = 3, we have I(3) \ I;(3) = {13}, then

Z bg’)(ﬂcl, 1) @ Uy = bg)(xh s 1) ® Lprr),

ic[n)*
w<ker 13

which is
k
/4113(331, ...,xl) ® (Z U;?l — 1E‘/(k)) = 0.

Therefore, bg)) (x1,...,21) = 0.

Suppose b%)(a:lbl,...,mlbl) =0 for 3 <1 < m. Then, for 7 € I(m + 1), b( )(a:l,..., 1) = 0if
m contains a block whose size is between 3 and m. Each partition m € [ (m + 1)\ Iy(m + 1)
contains at least one block whose size is greater than 2. Therefore, for 7 € I(m+ 1)\ I(m +1),

bg) (x1,...,21) = 0 if m # 1,,4+1. Hence, equation [I] becomes

b(Em_H) Zu'mﬂ — 1E’(k ) 0

which implies
b(Em—H)(xl, ) 331) =0.

The proof is complete.
The same, compare to Case 3 and Case 4 in free case, by applying the method in boolean
Case 2, we have Case 3 and Case 4 for boolean independence are also true.
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5.2. Application. Now, we apply our main theorem to noncommutative distributional symme-
tries associated with Ay, Ay, Ay, Cy, Cy, By, By. We have

Corollary 5.2. Let (A, ¢) be a W*-probability space and (z;)ien be a sequence of random vari-
ables which generate A.

e Classical case:
Suppose that A is commutative and ¢ is faithful. We have
1. If the joint distribution of (z;)ien is Cyg(n) invariant for all n € N, then there
are a W*-subalgebra 1 C B C A and a ¢-preserving conditional expectation E :
A — B (z)ien such that (z;)ien are conditionally independent and have identically
symmetric distribution with respect to E.
2. If the joint distribution of (x;)ien is Cy(n) invariant for all n € N, then there are
a W*-subalgebra 1 C B C A and a ¢-preserving conditional expectation E : A — B
(x;)ien such that (z;);en are conditionally independent and have centered Gaussian
distribution with respect to E.
o Free case:
Suppose ¢ is faithful. there are a W*-subalgebra 1 C B C A and a ¢-preserving condi-
tional expectation E : A — B such that
1. If the joint distribution of (x;)ien 18 Ag(n) invariant for all n € N, then there are
a W*-subalgebra 1 C B C A and a ¢-preserving conditional expectation E : A — B
such that (x;);en are freely independent and have identically symmetric distribution
with respect to E.
2. If the joint distribution of (z;)ien s Ay (n) invariant for all n € N, then there are
a W*-subalgebra 1 C B C A and a ¢-preserving conditional expectation E : A — B
such that (x;);en are freely independent and have centered semicircular distribution
with respect to E.
3. If the joint distribution of (x;)ien is Ay (n) invariant for allm € N | then there are
a W*-subalgebra 1 C B C A and a ¢-preserving conditional expectation E : A — B
such that (x;);en are freely independent and have centered semicircular distribution
with respect to E.
e boolean case:
If ¢ is non-degenerated. Let {E(n)}nen be a sequence of orthogonal boolean quantum
semigroups such that Bs(n) C E(n) C B,(n) for each n. If the joint distribution of
(x:)ien is E(n) invariant, then there are a W*-subalgebra(not necessarily contain the
unit of A) B C A and a ¢-preserving conditional expectation E : A — B such that
1. If the joint distribution of (x;)ien is By (n) invariant for all n € N, then there are
a W*-subalgebra(not necessarily contain the unit of A) B C A and a ¢-preserving
conditional ezxpectation E : A — B such that (x;);en are boolean independent and
have identically symmetric distribution with respect to E.
2. If the joint distribution of (z;)ien is By (n) invariant for all n € N, then there are
a W*-subalgebra(not necessarily contain the unit of A) B C A and a ¢-preserving
conditional expectation E : A — B such that (z;);en are conditionally independent
and have centered Bernoulli distribution with respect to E.

Proof. According the diagrams in Section 3 and 4, we have the following:
1. Cs(n) C Cy(n) C Cy(n) for all n, and Cs(n) # Cy(n) for n > 3.
2. Cy(n) ¢ Cp(n),Cy(n) for n > 3.
3. Asn C Ay (n) C Ap(n) for all n, and As(n) # Ay (n) for n > 3.
4. Ay (n), Apx(n) ¢ Ap(n), Ap(n) for n > 3.
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5. Bs(n) C By (n) C By(n) for all n, and Bs(n) # Bg(n) for n > 3. Moreover Ay (n)
is a quotient algebra of By (p)
6. Ay is a quotient algebra of By (n) and Ay (n) ¢ Ap(n), Ap(n) for n > 3.
By Theorem [[LT], we get our desired results.
O
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