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A de Finetti-style Result for Polygons Drawn from the Symmetic Measure

Michael Berglun
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There is a natural intuition that, given a larggthe distributions of small segments of a randomly
sampled polygonal chain and those of a randomly sampleédalpslygonal chain (drawn from the
subspace measure of course), should be very similar. We ttadwhis is the case for the symmetric
measure on polygon spaces, and provide explicit boundsetothl variation between these two
distributions.

1. INTRODUCTION

Let us begin by defining the symmetric measure for polygartspduced in[[3]. This measure
is defined as a pushforward, so we will first define the spacdsraps involved. SeArmg(n)
to be the moduli space of-edged polygonal chains iR up to translations and dilations, and set
Pol;(n) to be the subspace consisting of the closed polygons.

Next, setS : C" — C" to be the map which squares each coordinate, anéff seH™ — H"
to be the map from the-dimensional module over the division ring of quaterniortscl applies
the Hopf map ¢ — qiq) to each coordinate. It is important to note that the Hopf reepds
any quaternion to a purely imaginary quaternion, in such ag that it produces the fiber bundle

St | 2P 3,

We then note that by considering each polygonal chain as @erexnt list of edge vectors,
Army(n) can be identified with the subspa¢e € C™ : >~ | |z| = 2}, and thatArms(n)
can be identified with the subspagg € (R*)" : "7 ||| = 2}

In this way, we can views as a map fromS?"~1(y/2) — Army(n) and H as a map from
S4n=1(1/2) — Armg(n). Finally, the symmetric measure dormy(n) is the pushforward of the
Haar measure on the appropriate sphere.

Under the embedding df, b} — @+ib, it is not hard to show that the Stiefel manifdig(R™)
is precisely the preimage ®fols(n). Likewise, under the embedding 64, 5} — @+ jb, we see
thatV,(C") is the preimage dPols(n). Finally, observe that under these embeddings the subspace
measure agrees with the pushforward of the Haar measurally-iwe explicitly mention the
following fact: the Haar measure @&t is invariant under the permutations of the coordinates, and
so we find that the symmetric measure for polygons is invauader permutations of the edge
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vectors. More in depth detail of this construction can bentbin [3].

2. THE PLANAR CASE

We may sample an-edge polygon from the symmetric measureRiq(n) by applying the
map.S to a 2-frame sampled from the Haar measuré’g(R"). This 2-frame may in turn may be
obtained by sampling a matrix from the Haar measur@®¢n) and taking the first two columns.
Likewise, we may sample amedge arm from the symmetric measure om,(n) by applying
S to a point sampled from the spherical measureS8h—'(1/2). Since these utilize the same
map, if we are interested in the distribution of the first fedges of polygons sampled from the
symmetric measure, we need only focus on the distributidriBeofirst few coordinates ofv =
(1,91, 22,92, -, Tn,yn) € R?™ : |lv||> = 2} under the embeddings &%(R") and.S?"~1(v/2)
into R2",

Theorem 1 (From [5]). Suppose tha¥ is ther x s upper block of a random matri& which
is uniform onO(n), implying that it has mean 0 and covariance -,]9fr ® I;. Let X be anrs
multivariate normal distribution with the same mean andar@nce. Then, provided that

r+ s+ 2 < n, the total variation distance between the laws4and the law ofX is bounded by
B(r,s;n) =2 ((1 — T2 TE 1) , Wherec = % andt =min(r, s).

Here,A ® B is the Kronecker product od and B, given by:

Definition 2. WhereA = (a; ;) is anm x n matrix andB = (b; ;) is ap x ¢ matrix we define the
Kronecker productd ® B to be themp x ng matrix, given in block form as

al,lB al,nB

am,lB am,nB
Theorem 3 (From [6].). Let @, , i be the law of(&;,. .., &) when(&y, ..., &y Ekt1s - -5 6n) IS

uniformly distributed over the surface of the sphere : ng =72}, Let P* be the law of

=1
o(1,...,0(; where the( are independent standard normals. Then the total variatistance
betweerQ,, .., and Pf/\/ﬁ is bounded b _*E3 - for1 < k <n — 4.

The polygonal chains we wish to sample are being drawn frazigely the distributions that
these theorems are concerned with. Moreover, they areysngmn upper bound on much they
differ from a normal distribution. We will now use this to budithe total variation distance be-
tween the distribution of small collections of edges in hijimensional polygons sampled from
the respective symmetric measuresiowiz(n) and Arms(n).



Theorem 4. Let P(k,n) be the law of the firsk-edged segment of a randomedged closed
polygon sampled under the symmetric measurédoi(n), and A(k,n) be the law of the first
k-edged segment of a randomedged arm sampled under the symmetric measurdionm (n).

If 1 <k < n — 2, then we have that the total variation betweR(¥, n) and A(k,n) is bounded

above by%,(k,n) = 2 (2n2_k§7€3_ L+ (2"(252?4&];?4)).

Proof. First, notice thatP(k, n) is given by the law ofZ, thek x 2 upper left block of a matrix
sampled uniformly orO(n). Likewise, A(k,n) would be the law of the firstk coordinates of a

point sampled from the sphe{e;—“ > &= (V2) } To use Theorenis 1 arid 3, we will ne&d
=1

the 2k multivariate normal distribution with mean 0 and covaruncatrix - Iy, andP AN the

law of %Cl, R ﬁCQk with the {; independent standard normals. Here we find that}t’ﬁfs\/ﬁ is
a multivariate distribution with mean 0 and covariance gilg

T . . . . .
(%ng) (ﬁb@ = 175, so we see thak and Pf/’f\/ﬁ are multivariate normal distributions

with the same mean and covariance. This distribution isnafienoted byV ( 0, — I, |. Since
n

total variation is a norm on measures, it satisfies the theamgquality. We then find that:
1P(k,n) = Ak, )| < (12 = X| + 1P 5 = @ vzon] oy

k4 4\ 2 2k + 3
§2<<1—T> —1>+2<72n_2k_3> )

o (@Cn—k—4)(k+4) 2k + 3
_2< (n—k—4)2 +2n—2k—3>' ®
O

Proposition 5. % (k,n) is asymptotic td+19,

Before moving on, let us take a moment to discuss this bounddre detail: It should be
pointed out that#,(k, n) is decreasing to this asymptotic. Specifically, for &ny 3, we will
have %y (k,n) > 6’“%”’ Nonetheless, if we wanted to Igtgrow with n, then as long as is
o(n) [for examplek = An® for anyp € [0,1) and\ € (0, c0)], we have thaELli_{lgo PBo(k,n) = 0.
Likewise, if we writek = an, we see that:

. L (2n —an —4)(an + 4) 2an + 3
Jg&o%amm—,}fgﬂ( (h—an—17 zn_zan_3> @)
o 2-a) o
‘2<<1—a>2+1—a> ©)

2a(3 — 2
e ©



Setting up this quadratic inequality, we quickly find that fo> % ~ (0.136675, this limit,
2%:?3‘), is greater than 1. We point this out, as this tells us thadag &s, in the limitk < 13%
of n, we can glean some information about the distributiork-@dged segments in Boh) by

virtue of our knowledge of the distribution éfedged segments iirms(n).

Definition 6. Call a function f: Army(n) — R a k-edged locally defined function if
f(él,€2,....€ul,...,uk]) = f([E1,€,..., €% 01,...,v, ]) fOrall &,uj,v; € R?,
ie{l,2,...,k},je{1,2,...,n—k}.

Theorem 7. Let f be an essentially bounde#;edged locally defined function. Then the expec-

tation of f over Poly(n) may be approximated by the expectationfabver Arms(n) to within
M %5 (k,n), whereM is a bound forf almost everywhere.

Proof. The expectation of over Armz(n), Eprm,n)(f), IS given byfAer(n) fua, wherepu 4 is
the symmetric measure olrmg(n). Likewise, the expectation of over Pob(n), Epg,(n(f), IS
given byfpob(n) fvp, wherevp is the symmetric measure dtrms(n). Sincef is a

k-edged locally defined function, we may integrate out theras k£ edges to obtain

EArman) = f%(k) f(q)pk, wherepk is the law of the firsk edges of a polygon sampled from the

symmetric measure oArmy(n). Similarly, we can see thafpoy, ) = [, ) f(q)vk, wherevk
is the law of the firs& edges of a polygon sampled from the symmetric measure orfrHolWe
may therefore write:

’EPolg(n)(f) - EArmg(n)(f)‘ = ‘/f’/s - /f/j’]:L’ (7)
oy / FWE = )] ®)

< fllscllvh — b llov 9)

<N lloo Pk, ). (10)

]

Corollary 8. Let f be an essentially bounde&l;edged locally defined function. L&, (n) stand
for the expectation of over Pok(n), and E,(n) stand for the expectation gf over Arms(n).
Further, let £,(n) stand for the expectation of the sumjfobver a polygon inPolz(n), by which

we mean the expectation of the quan@ f(e1ti,ea4i,- -, entqi), Where the indices are taken
i=1
modulon. Likewise, let, (n) stand for the expectation of the sumfadver a polygon iMrms(n).

; E
Provided thatlim nFE,(n) = oo, then lim p(1) — 1 and lim p(1) —
n—o00 n—00 a(n) n—o0 Ea(n)



Proof. From Theorenf, we see thatz,(n) — M %s(k, n) < Ep(n) < Eq(n) + MPBy(k,n).

Dividing through byE, (n), this becomes — M‘”?Q(’(C ’)‘) <z E % <1+ M%(’(C ’)’) From Propo-
sition[], we see that#,(k,n) is asymptotic toﬁ’“‘glg. This, in addition to our assumption on
PBo(k,n) . 6k + 19

= (. The first result then follows

nh—>I§o nkq(n), tells us thatnh_{r;OM Faln) n%rI;oMnEa(n)
from the Squeeze Theorem.
In the second case, note that from the invariance under petions, we have that

E;(n) =nEy(n) andE,(n) = (n — k — 1)E,(n). This produces the inequality
E(n)—nM%Q(k,n) < E;(n) < Ev( )+nM PBs(k,n), which we can divide through to produce:

2 Balkn) n Ep(n) Jg(k n) n
1 - M= o) <n—k—l) < E:(n) <14+ M Tl (n_k ) The result then follows from the
Squeeze Theorem and our earlier observationtha (( )) — 0asn — oo. O

3. CURVATURE

The total curvature of a planar polygon is defined as the sutmedfirning angles, and when we
sample under the symmetric measure, each turning anglédaame expectation. Combining this
with the fact that an expectation of a sum is the sum of theaagiens (even for highly correlated
data), we see that the expectation of total curvature wilhlienes the expectation of a turning
angle. Since we know that the edge vectors for a polygonahahaArm,(n) have direction
sampled uniformly from the sphef~!, it is easy to see that the turning angle has expected value
of §. Using Theorenl, we see thatEp,, ) (0) — 5| < m%2(2,n). Moreover, we know that a
closed polygon will have a higher expected turning angle thaolygonal arm. As such, we see
that we can bound the expectation of the total curvature tdsed planar polygon as:

. 7 12(n—3)
< Ep(k) —nt <2
0 < Epo(k) ngy < n7r<2n_7+ (n—6)2>

Of particular interest, we see from taking the limit of thigguality, that the expectation of total
curvature of planar polygons lies betwee§ and31w + ng + O (n‘l). Of course we already
have a trivial upper bound efr, but the bound we show is better, provided that 69.

Even though it has already been shownLin [4] tgﬁ% — 1, our corollary here shows
this not to be an artifact of total curvature, but of the pnoixy in distribution between pairs of
edges in open polygonal chains and pairs of edges in clodgdgmal chains. Let us now look at
the variance of total curvature.



Proposition 9. The variance of total curvature of a random polygon sampledien the symmetric
measure orPoly(n) is bounded by

M = 7% (n%5(2,n) + 2n%5(3,n) + (n* — 3n)%a(4,n)) — n® (re, +€2)

wheree,, = Epy,m)[01] — 5 is surplus of the expectation of the turning angle of a patygeer
Pola(n) over.

Corollary 10. The variance of total curvature of a random polygon sampledien the symmetric
measure orPols(n) is bounded above biyim)2%5(4,n) ~ 43n72.

Proof of Proposition. We know that the covariance of a pair can be computed as

COV(@Z‘, 93) = E[(@Z — E[GZ])(HJ — E[HJ])] = E[HZHJ] — E[QZ]E[HJ] We already have established
the bounds thaf < E(6,) < T + n%2(2,n). For convenience, let, = E(0;) and define
€n =ty — 3, SO thate, > 0 ande, — 0 asn — oo.

We may partition the paird;, 6;) into three categories: (})= i mod n, (2) j = i+ 1 mod n,
and (3)j =i+ kmod n for 1 < k < 5. By the symmetry of the measure, the covariance of any
pair will be the same as the covariance of any other pair fioenseame category. More, we see
that in each category, the covariance is the integral of aargmlly bounded function determined
by a set of consecutive edges (a pair of edges in categoryrihle ¢f edges in category 2, and
quadruple of edges in category 3).

Recall then that the variance of a sum is equal to the sum afdhariance of the pairs . This
tells us that the variance of total curvature may be paniittbinto the sum:

n n n n—2n—1i
Var (Z 9i> = (Z Cov(6;, 9,-)) +2 (Z Cov(8;, 9,-+1)> +2 (Z > Cov(b;, 9i+k)>
i=1 1=1 1=1 1=1 k=2 (11)
=nCov(61,01) + 2n Cov(b1,02) + n(n — 3) Cov(0y,6s3). (12)

By choosing to comput€ov(6;,6;) = E[0;0;] — E[6;]E[6;], and recalling our definition that
tn, = E[0;], we may express this as:

Var (Z m) = n(B[07] — ) + 2n(E[0165] — 17) + (n* — 3n)(E[6:63] — 17)  (13)
i=1
= nE[0?] + 2nE[01602) + (n? — 3n)E[01605] — (nt,)%. (14)

We can computdZ[¢?] as the integral of a scale-invariant function determinedabyair of
edges that is essentially bounded7y This means that we may use Theol@to conclude that
| Epoty (n) (03] — Eavms(n)107]] < 72%B2(2,n). A simple calculation shows thafy,,,, ) [07] = ,

so we have thaEp,, () [07] < 72 (B2(2,n) + §).



Likewise, E[010;] and E[0,05] are computed as the integral of scale-invariant functions
determined by three and four edges respectively. The imidkgree of edge directions in
Armgz(n) tells us thatE m, ) [0102] = Earmem)[01]Earman)[f2] = %2. So we see that
EPolg(n) [Hl]EPolg(n) [93] < 2 (%2(3777‘) + %) and

EPolg(n) [HI]EPolg(n) [92] < 7 (%2(47 n) + %)
This allows us to place an upper bound on the variance oftatakture forPol,(n) as follows:

(Z 0; ) = nE[03] + 2nE[0:05] + (n? — 3n)E[0163] — (nt,)? (15)
< nm2By(2,n) + 20w By (3,n) + (n? — 3n)n’Ba(4,n) + o - nz(g + €,)?

(16)

< 7? (n%a(2,n) + 2nPa(3,n) + (n* — 3n)%a(4, n)) — n? (men + e) (17)

< w°n’%By(4,n) (18)

Next, we claim that, as one would naturally suspegt(k,n) is increasing ink. Recall that
Bo(k,n) =2 <(2”‘k‘4)(kj4) g 2hAd ) The second summand is clearly increasing, witas

n—k—4 n—2k—3
the denominator i(s decr)easing while the numerator is isanga The first summand likewise has a
decreasing denominator, and the numerdr,— (k + 4))(k + 4) is quadratic irk with negative
concavity. Since the critical point of this quadratic occatk = n — 4 (which is also the largegt
for which the bound holds), we see that the numerator of teedirmmand is also increasing.

We can now establish a larger bound by replaciig(2, n) and %»(3,n) with %1(3,n). We
then obtain an even larger bound by ignoring the(re,, + €2). O

Chebyshev’s inequality tells us that the probability of &gon having total curvature inside
the range ofnt,, — A\v/Var, nt,, + A\v/Var| is at leastl — % By the above corollary, we can extend

this to a slightly larger, but easier to work with interval ®placingy/ Var with nm\/%2(4,n).
This interval is therjn (g +ep — AT %2(4,11)) N (g +en + /\\/%2(4,11))]. We know from

[4] that ¢,, is asymptotic to%. We also know from Propositidhl that %5 (4, n) is asymptotic to,
and less thanﬁ so we see that, asymptoticalky, < %»(4,n). Since we only obtain useful

information when\ > 1, this interval may be augmented Emr (— — %) , N (g + 2%)]

Notice here, that the length of the intervabisr,/n. So the length of this interval is growing at a
rate ofO(y/n).

Of course we already have the trivial bounds that all planéygons inPols(n) will have total
curvature betweer andn, so let us first check that these bounds are better than thaetBng
A\ = /2, we can say that at moétof the polygons inPoly(n), lie outside our given bounds, and



that the lower will be larger tha2r whenn > 48, while the upper will be smaller thamr when
n > 159. Past those marks, our bounds from variance become mond tisaf the trivial bounds.

Before moving on, we would like to point out that this anadysias intended merely as an
example, and is in fact adaptable for any essentially baikeedged locally defined functidn

4. THE SPATIAL CASE

To produce the spatial analogue to Theotdm 4 and Theblem Wilveeed an analogue to
Theorent L. In[[5], such an adaptation is left to the inteckstader, as are many of the tools needed
along the way. So as not to interupt the flow, these detaile baen placed in the Appendix and
pick up with these new theorems:

Theorem 11. Let Z be the upper left x s block of a random matrix/ which is uniform ori/ (n),
so that it has density given by Theor8 Further, we have thabZ = O € ., ;(C) and

Cov(Z) = n7'I, ® I,, so we shall takeX to be a random matrix with the x s com-
plex multivariate Gaussian distribution with the same meend covariace. Then, provided
thatr + s + 2 < n, the variation distance betweef’(Z) and .Z(X) is bounded above by

B(r,s;n) =2 <(1 - T—j;s)_tz - 1) , wheret = min(r, s).
Theorem 12. Let f be an essentially boundédedged locally defined function. Then the expec-

tation of f over Pols(n) may be approximated by the expectationfabver Arms(n) to within
M %s5(k,n), whereM is a bound forf almost everywhere, and

4
By(k,n) == B(k,2;n) = 2 ( Ak + 3 n 1>

dn—4k—3 " (n—k—2%
Theorem 13. Let f be an essentially boundefi;edged locally defined function. Then the expec-

tation of f over Pols(n) may be approximated by the expectationfobver Arms(n) to within
M %5 (k,n), whereM is a bound forf almost everywhere.

Corollary 14. Let g be an essentially bounded, locally measured quantity oflggpaal chain.
Let E,(n) stand for the expectation gfover Polz(n), and E,(n) stand for the expectation qf

overArms(n). If nE,(n) — oo, then EZEZ; — 1.

Moreover, the expectation of the sumgabver the pongonE;(n) and the expectation of the

(n)
o — 1.

sum ofg over the polygonF,(n) also satisnyEZ—EZ; — 1and %

2 For further example, the interested reader will be able tifywéhat the arguments leading to PropositBrand
CorollarylIll could be slightly adjusted to say that the variance of the sfnhover alln runs of consecutivé-edges
in a polygon is bounded by the quantity)2%.(2k, n), whereM is a bound forf almost everywhere.



Proof. The proofs of these mirror those given in for Theoi@ritheoreniand Corollaryg], where
we replacel; (R™) with V5(C™), 2" with $*", and our variation bounds from the shared, close-
proximity multivariate Gaussian, come from Theorghhand TheorerBlrespectively. O

Looking at this bound, we see that, as with the planar cagelifhiting to O at a rate 0O (n).
Specifically, for any fixed:, we have li_)m nABs(k,n) = 10k + % and we additionally have again

find that%s(k, n) is strictly less than the asymptotic, provided that the lbisruseful (Z,(k, n)
is greater than 2 fok > %). We again find that whed = o(n?) with 0 < p < 1, this is
limiting to 0, and that whet = an, $3(an, n) is limiting to an understandable quantity, this time

2+ ﬁ — 2, which is greater than 1 far > 0.08235533. In other words, provided that the

the number of edges is less thar8% of n, we are able to say that the distributionskeédged
segments coming froMrmg(n) are close enough in total variation to those coming fiesty ()
to hope to apply our theorems.

5. TORSION

In [4], we can see that the integral to find the expected tatavature with respect to the
symmetric measure dPol;(n) is explicitly computed ag?(x; Polz(n), vp) = In + IT52%. Let
us now then attempt to solve the problem of finding bounds ertdtal torsion.

Definition 15. For a polygon inR?, we define the torsion angle (sometimes called the dihedral
angle) at an edge; by the following procedure: Lep; be the plane which is normal &g at v;.
Project edges; 1 ande;, 1 to p; alongv; to get a 2-edge planar polygonal armpinwith middle
vertexv;. The torsion angle is then defined as the angle between tdgss,ewith the convention
that we take its value in the range =, r|.

Proposition 16. The distribution of the torsion angle for arms is the samehasdistribution of
m — 0, wheref is the polar angle in the spherical coordinates of the edges.

Proof. Write e; = (r;, 0;, ¢;) in spherical coordinates. Rotate the configuration sodhiaton the
z-axis. If we then further rotate so that ; has noy-component, we can see that the projections
to p; (the zy-plane) form a planar 2-edge arm that runs along the negataes, then turns to
form an edge given in polar coordinates(as; 1, ¢;+1). As such, the torsion angle of the rotated
configuration will be given byr — 6;,,. Since the distribution of arms is invariant under #@(3)
actior? onR3, the result follows. ]

Proposition 17. The expectation of the torsion angle of a polygonal arm sathphder the sym-
metric measure oArms(n) is 0.

3 This follows from thel (n)-invariance by taking an appropriate block diagonal matix.
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Proof. Similar to how we found the expectation of curvature, sineekwow that the symmetric
measure is expressible as a product measu®’on (52)", with the spherical measure on the
individual copies of5?, we see that the distribution of the polar angles will be amif on[0, 27),

so the expectation of — 6 will be 0. O

For polygons, we have an integral even more imposing tharottiefor planar polygon’s
curvature. So this is an excellent opportunity to use thal teariation bound. Using The-
orem[I2, we see thaiE(r;) — 0] < w%s(3,n). This give us bounds on total torsion of
—nr#3(3,n) < E(r) < nnAhs(3,n). This is limiting to the range of—55.57, 55.57]. How-
ever, unlike total curvature, the expectation of totalitmrover Arms(n) is O for anyn. As such,
nli_)Holo NE A, () (7) = 0, SO we may not apply Corollafdl Nonetheless, perhaps we may hope

to glean useful information by considering the variance.

Proposition 18. Wherer; is the torsion angle at edge of a polygon sampled under the symmetric
measure omrms(n), we have tha€ov(r;, 7;) = & ;372

Proof. We can easily see from the independence of directions an@aier description of the
dihedral angle, that the covariance of any distinct pairibédral angles will be 0. So let us focus
on Cov(7;, 7;) where we have:

Cov(t;, 1;) = Var(r;) (19)
- / (r; = 0)* do (20)
Armgz(n)
1 2m )
=5/, (7 — 6;)2 db; (21)
= —(mr—6) (22)
om 9,20
_ 13
= 67T(27T ) (23)
_ éﬂ?’. (24)
O

For an explicit example, notice that this means the variaftetal torsion for an open polygo-
nal arm isgw2, which pairs with Chebyshev’s inequality to tell us that vilesld expect less than
one-third of all open polygonal arms to have total torsiothwibsolute value greater thar/n.

Proposition 19. Wherer; is the torsion angle at edge of a closed polygon sampled under the
symmetric measure dfols(n), we have that the variance of total torsien= 3", ; is bounded
above by2r? + n?7?%;3(6,n).
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Proof. TheU (n) invariance will again suggest that we should partition thespof torsion angles
into: (A) (1i,7), (B) (14, +1), (C) (13, Tix2) and (D) all others. Within these categories, those
in (A) have covariance equal ©@ov, (7, 71), those in (B) will matchCov), (71, 72), those in (C)
will match Cov,, (1, 73) and those in (D) will matciov, (7, 74). Breaking the variance apart, we
have:

Var <Z TZ‘) = Z Z Covp(7i, 75) (25)
i=1 i=1 j=1

= n Cov,(11,71) + 2n Covy (71, 72) + 2n Covy (11, 73) + (n2 —5n) Covy(11,74)

(26)

= nEp(le) + 2nE,(T1712) 4+ 2nEy(Ti73) + (n2 —5n)Ey(Ti14) — an[71]2.
(27)

Here, we see that both, (1) and E,(77) are obtained as the integral of an essentially bounded
3-edge locally determined function, and similarly we needides forE,(r172), 5 for E, (1 73)
and 6 for E,(r174). We have seen that, over arm8(r;, ;) = & ;:m2, SO we may bound
Ey(t}) < im? + n2%5(6,n), and E,(r;7;) < 0 + #3(6,n) for i < j, by using the fact
that, for fixedn, %3(k,n) is an increasing function of. To see this fact, recall that we have

HBs(k,n) =2 <4n4_’f§f’_3 (n—z4—3)4 — 1) , written as the sum of three quantities, only the first two
of which depend otk. In the sum, the first summand has an increasing numeratadesrdasing
denominator a& increases, while the second has constant numerator anebdewy denominator.

This shows us thaBs(k, n) is increasing ink (within its domain). This leaves us with:

Var (Z TZ‘) = nEp(Tf) + 2nE,(1172) 4+ 2nEy(Ti73) + (n? — 5n)Ep,(T174) — n?E[r]? (28)
i=1

< §7T2 + n2772<%’3(6, n) — n2Ep[7'12] (29)
< §7T2 + nzﬂzﬁg(& n) (30)

O

This bound is asymptotically bounded B§r?n. At the moment, all we can say using only
Chebyshev’s Inequality and our earlier observation abe&itoounds on expected total torsion, is
that, for largen, we expect that at Iea(;l — %) 100% of polygons inPol3(n) have total torsion in
the range oftr (55.5 + )\\/86—71). While not seemingly very impressive, it is better than tinadl
bounds on total torsion in the case of= /2 for n > 272. That being said, we unfortunately
find thatr?n2%5(6,n) > 55.5m for n > 8, which makes this bound simply too high to be used
profitably with Chebyshev’s Inequality.
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6. FUTURE DIRECTIONS

From looking at the distribution function for sub-arms (fiid [4]), it is clear that many expec-
tations are significantly easier to explicitly compute famm,(n) opposed tdol,(n). Addition-
ally, in some of these theorems (e.g. Theorein 11), the shaspof the bounds listed is unknown.
In particular, a number of numerical experiments hint thig the case that there may indeed be
room for some improvement, so this is definitely a topic fattar investigation.
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A. TECHNICAL PROOFS

Throughout this section we will Ie¥’(x) denote “the law ok,” as is the convention in many of
the references.

Definition 20. Given a subspac#/ of C", the compact subgrouf,,(M) C U(n) is defined by
Un(M)={9€U(n)|lgx ==xforallxz € M}.

Definition 21. SinceU, (M) is compact, we may pushforward the Haar measuré/¢m) to
U, (M) and then normalize this pushforward to produce a meaguren U, (M).

Definition 22. We say thalU is uniform onU,, (M) if it is a random element with law,,.

Definition 23. Let P be the orthogonal projection onto thedimensional subspade ¢ C™ and
setQ = I — P to be the orthogonal projection onid. Letr be no larger tham — m and leto

be a complex matrix of size x n. Define A(M, «) = aQa*. Further, sinc&) is Hermitian, we
see thatd(M, «) will be Hermitian. The Spectral Theorem then tells us thatédtexists a unitary
matrix U4 and a real diagonal matri® such thatd(M, «) = U*DU. SinceA(M, «) is positive
semi-definite, we know that all elements bf are non-negative, so it makes since to define the
matrix D'/2 to be the matrix whosg, j)—entry is the non-negative square root of the)—entry

of D. We then definel'/2(M, o) := U*D'/2U. In particular, note that

AYV2(M,0)AY?(M, o) = U*DYV2UU*DY?U = U*DV2IDY?U = U*DU = A.

Lemma 24. Fix an m-dimensional subspackl C C", and letP be the projection matrix fof/.

Let U be uniformly distributed oi/(n — m) and letZ be the upper left x s corner block of
U. Leta be anr x n complex matrix and lef be ans x n complex matrix, where and s are

no larger thann — m. For A = A(M,«), B = A(M, (), and the variatd/” = U *, we have
ZL(V)=ZL(AV2ZBY? 4 aPp*).

Proof. First, notice that for anyn-dimensional subspack/, and anyl' € U(n), the subgroup
U, (M) ={g9 €U(n) : gr ==xforallx € ' M}, is equal to the subgroupl,,(M)I'*. To see
this, note that ify € U,,(M) andz € T'M, then there is a uniqug € M so thatz = I'y. Then
(CgT™*)z = (I'g)y = 'y = x, sol'gI'* € U,(I'M). Further, ifh € U,(I'M), andy € M, then
hI'y = T'y. Multiplying on the left byI™* then shows us that*Al'y = y, soI"™*hl" € U,,(M). This
then tells us thak € I'U,,(M )I"*. Together, these give us the relationships that

U, (M)I™* C U,(I'M) C TU,(M)T'* as desired.
Next, sincel/,,(I'M) = I'U,,(M)I'*, it suffices to establish the lemma in the case where
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M = My = {ZG cr 7= [g} T cm}. For My, itis clear that

Un(My) = {g €0, :g= [Ig 2] ,heU(n— m)}. Hence, ifU is uniform onU(n — m),

8} is uniform onU,, (Mp).

I, O I B 10 O
SetFPy, = [O O] , the orthogonal projection ontbly, and set)g = I — Py = [O In-m]'
We can writel)y = CpC{, whereCy is then x (n—m) matrix [I 0 } . Then for any = aU,3*,

we have that

V = al,Uyl,B* (31)
= a(Py + Qo)Uo(Po + Qo) * (32)
= a(PoUo + Qolo)(Fo + Qo)B* (33)
= a(PoUoPo + QoUo Py + PolUgQo + QoUoQo) 5* (34)
= a(PyPyUp + Qo PyUop + Ug PyQo + QolUoQo) 8" (35)
= a(Py + OUy + UgO + QoUpQo) B (36)
= a(Py + QolUoQo)B" (37)
= aPRyB* + aQoUpQoB". (38)

In 31 we use the identity théfy = I,,Uy1,, and in 32 the identity thak, = P + Q. Lines 33 and
34 follow from the distributive property. Line 35 comes frahe identity that

PyUy = UgPy = Py. Line 36 follows from the identity thaPyQy = Qo Py = O. We have then that
V = aQoUpQoB* + aPyS* = aCOCgUQCQCSB* + aPys* = ’yU5* + aPy5*, Wherefy = aC)y
and = BCy and we have used the fact the§UyCy = C {g} = U. Now notice that we have
Ag = v = aQoa* = A(My,«), and By = 66" = pQos* = A(My, ). This allows us to
write v andd in their polar decompositions/[9], as= A(l)/2 [I. O] 1, ands = Bé/2 [I; O] o,
wherey, 19 € U(n —m). Recalling that is uniform onU (n — m), and is thus sampled from
the Haar measure, we see tHatU) = .Z (¢ U3 ) which gives us:
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ZL(V) = Z(aQoUoQob* + alo ") (39)
* IS *
— <A(1]/ (1, O] b LU [ 0] BY* + aPRyB > (40)
e <(A(1)/ *[1. O]U [H BY* + aPOB*> (41)
= Z(AY?ZBY?* + apyp*) (42)
WhereZ = [I, O|U [g} is ther x s upper left block of/, as desired. O

We may view the Stiefel manifolt;, (C™) as the set of alk x ¢ complex matrices! that satisfy
A*A = I,,. Further, it is well known that if" is uniform onU (n) thenT'; =T' [g} , Is uniform on
Vo(C).

Definition 25. For a compact grouff acting on a measurable spa®€ a functionr : % — %
is called a maximal invariant function undérif: (1) 7(gy) = 7(y) forally € # andg € G and
(2) for any pair of pointgy;, y2 € % such thatr(y;) = 7(y2), there exists someg € % such that

gy1 = Y.

Proposition 26 (From [8]). Suppose thafr is a compact group that acts on a measurable space
%. Letr : % — % be a maximal invariant function, and faor= 1,2, let Z; = 7(Y;) for two
G-invariant distributionsP; = .2 (Y;). If £(Z1) = £(Z5), thenP, = P;.

Next, forg < p, partitionT'; = [A , whereA isp x gandV¥ is (n — p) x ¢. Additionally, let

v
L,.» be the space of all x ¢ complex matrices of rank, and note that/,(C") C L ,,.

Proposition 27. SupposeX € L, ,, has a leftU (n)-invariant distribution. Let : L, ,, — V,(C")

satisfy¢(gx) = g¢o(x) forall x € L,,, andg € U(n), which is to say thap is an equivariant
map. ThenZ(¢(X)) = Z(I'1). In other words, the image of any invariant distribution en@n
equivariant map is the Haar measure djp(C").

Proof. From the uniqueness of the uniform distribution ®p(C™), it suffices to show that
Z(gp(X)) = Z(p(X)) for g € U(n).We have from assumption @nthat

Z(gp(X)) = Z(p(9X)) and from leftU (n)-invariance thatZ (¢(g X)) = Z(p(X)) O

Notice here that a particular sughis given by¢(z) = z(z*x)~/2, (the unitary matrix of the
polar decomposition of the matrix as seen in Lemma 2.1 of [11]), as we have that

¢(g9z) = gz ((gz)*gz)~V/? = ga(a*g*gx)~Y? = ga(z*z)~V/2
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Proposition 28. Let X € L, , and partition it into. X = [}Z/} Y :pxgq Z:(n—p)xgq Then
ZL(A) = L(Y(Y*Y + Z*Z)~/?), where againA is the topp x ¢ block ofT';.

Proof. We have then, thak*X = [Y* Z*| PZ/] =Y*Y + Z*Z, so the matrix
Y (Y*Y + Z*Z)~/% is the uppemp x ¢ block of X (X*X)~1/2. The result then follows from the
previous proposition. O

Proposition 29. LetU < L, ,, and partition it intoU = [I‘/I//] ,Vigxp, W:(n—gq)xp. Then
LAY =2 (V(V*V + W*W)_l/z) and Z(A) = Z2((V*V + W*W)_1/2V*),

Proof. By mirroring the previous proof, we see that(A*) = 2(V (V*V + W*W)~1/2). Since
V*V 4+ W*W is Hermitian, so too is its square root. This tells us that

(V(V*V + W*W)~Y2)* = (V*V + W*W)~1/2)V*, so we can conclude that

ZL(A) = L2(VV + WW)~ 12y, O

We now have the tools needed to find explicitly the densityhee distributions. First, we will
define the densities we will be using:

Definition 30 (From [10]). For a matrix distributiort”, whosen rows are independent and identi-
cally distributedp-variate complex Gaussian random variables with covagianatrix>:. Then the
distribution of Y*Y = >"7'_, Y;Y;*, has the probability density function given by:

det(A)"P -
pw(d) = ——— (4) o~ t(E1A).
72P®P=DD(p) ... T'(n —p+ 1) det(Z)"

defined on the set of Hermitian positive semi-defipite p matrices. This distribution is known as
the Complex Wishart distribution and we will denote it@¥% (p, n, )

Next, we point out that in_|7] matrices with the above digitibn are said to have the complex
matrix variate gamma distributiod,(n, ).

Definition 31 (From [7]). For A ~ ¢9,,(a,I,) = €% (m,a,1l,) andB ~ €9, (b,1,,) =
€W (m,b, I,,), define the complex matrix variate beta type | distributisredher of

(1)U = (A+B)"Y2A((A+ B)"'/?)) (43)
(2) V = AY2(A + B)"1(AY/?). (44)
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Further, the density function of this distribution, derbts®¢ 2.7 ,,,(U; a,b), is given by:

 ET o (a)ET n(b)

pp(M) det(M)*~™ det(I,,, — M)>~™,

defined on the set of: x m Hermitian positive semi-definite matricdg, whereéT',,(a) stands
for zmm=b/2 1T T'(a — j + 1).

Proposition 32. Z(A*A) = €247 (p,n — p) and L (AA*) = €A.7,(q,n — q). Further,
Z(A*A) has a density given by:

PAR) = T )Ty n— 1)

det(A*A)P"1det(l, — ATA)"P

Proof. Let X be distributed av (0, I, ® I,), and be partitioned a¥ = PZ/] .

From our definition of the Complex Wishart distribution,
LYY) =CW (q.p 1) = €Y4(p,1g) andL (2" Z) = €W (¢, n — p,1q) = €FGq(n — p, 1y).
Next, we see from Propositidfl that
L(AAY) = L2((Y*Y + Z*Z)"V2)Y*Y (Y*Y + Z*Z)~1/?). Finally, from the definition of the
complex matrix variate beta type | distribution, since ikig the form
U= (A+B)"\2A(A+B)"'?)for A= Y*Y ~ €9 ,(p,1,) andB = Z*Z ~ €9 ,(n—p, I,),
we see that

AA* has a distribution of typ& %.7 ,(¢, n — q). Likewise, we see thah*A ~ €247 ,(p,n —p)
and a density function given by:

p(A*A) = %Pq(;)%rq(n—p) det(A* A det(I, — A*A)P~ )
_ €T ,(n) o N

N %Tq(p)‘quq(n — ) det(A*A)P~9 det(I; — A*A)" P71 (46)

|

Theorem 33 (From [13]) For a complex matrix)M of sizep x ¢, if the density ofd/ depends
only on the matrixB = M*M, by a functionf(B), then the density oB = M*M is given by
£(B) det(B)P~xe=(1/2)(a-1)

;1‘:1 Flp—j+1)

We know have the tools needed to determine the probabilitgitlefunction ofA:
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Theorem 34. For the the uppep x ¢ block ofT’y, called A, the density oA is given by
f(A) = 1]l — A*A|""P~% wherec is the constant given by

“ _ﬂqu < nﬁ_i;fl» '

Proof. It follows from the Propositio2lthat A*A has a density given by .7 ,(p, n —p). First,
we have that the distribution & is invariant under the action &f(p) given by left multiplication,
A — gA,g € U(p). Second, we have a maximal invariant givenifyA) = A*A. Let ¥ be the
random matrix variate with density given by U(p) acts on¥, and the density of the maximal
invariantT () is then calculated from TheordBil as

c1 det(I, — W*0)—P=4 det (B )P=d7a(p—(1/2)(a-1)

h(U* W) = _ (47)
(™) jaTlp—j+1)
_w H < (n—j+1) > det(ly — W) 7P det(‘If*fIf)p—qwq@—(l/z)(q—l))
n—p—j5+1) 1 Tlp—j+1)
(48)
_ Tr_q(q 1 ﬁ TL j + 1) det(\ll*\y)p—q det([ _ \P*\P)n—p—q
AT —j+ D —p—j+1) I ’
(49)

This calculation shows tha?’ (V*¥) = ¢ %.7,(p,n — p), SO we see tha’(¥*¥) = Z(A*A).
Since we can see that the distributiondis invariant under the group action f(p), it follows
from Propositior26l that £ (V) = £ (A). Hence,f must be the density ah. O

Theorem[11.Let Z be the upper left x s block of a random matrix/ which is uniform ortU (n),
so that it has density given by Theor8 Further, we have thabZ = O € ., ;(C) and

Cov(Z) = n7'I. ® I, so we shall takeX to be a random matrix with the x s com-
plex multivariate Gaussian distribution with the same meaml covariace. Then, provided
thatr + s + 2 < n, the variation distance betweef’(Z) and .Z(X) is bounded above by

B(r,s;n) =2 <(1 - T—j;s)_tQ - 1) , wheret = min(r, s).

Proof. Setting.Z(X) = P1 and.,iﬂ( ) = P», let us start with the case 6f< r. The densityf; of

Py isgiven byf(x) = ,5 e~ (@) [10]. The densityf, of P, is given in Theorer4l Since these
are functions ofc*x andz z respectively, the variation distance is equal to the viaradistance
between the distributions af'x andz*z. z*z has, in accordance with the definition above, the
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complex Wishart distributiors# ( T, % 8), and hence a density given by

) = = dento)” e~ (G I (50)
250D - I‘(r — s+ 1)det(LI,)r
= — det(v) e~ tr(v) (51)
725D T (e — s+ Dn—sr
— det(v)r—se—ntr(v)ﬂ_ 23(3 1) n (52)

[T —j+1)

defined on the set of x s Hermitian, positive-definite matrices. The density:0 we have seen

in Propositior32lto be given by
¢Ts(n)

CTs(r)6Ts(n —1)

det( )r Sdet(ls—v)" r— 871.28(8 1) Hy 1F(n—]+1)
(a2 O, D — 5 + D)) (@2 V[ T(n — 7 — j + 1))

) I T Fn—j+1)
_ r—s Is _ n—r—s s(s—1) 55
det(v)"~* det(I; — v) L Er(r—j+1)r(n—r—j+1)’ (%9

g(v) =

det(v) ~*det(Iy —v)" "¢ (53)

(54)

defined on the set of matrices withand I — v positive definite. By an alternate characterization
of total variation (seen in [5]), we see that the total vasiadistance is given by

Srsn = [lg(v) = f(v)|dv =2 [, (gg)) - 1) f(v)dv, whereE is the set of x s positive definite

matrices on whicly(v) > f(v). As we will be using it often, let us now simplify the expressi
g().

()
r—s n—r—s 75 s—1 I'(n—j+1
g(v) _ det(v) " det(Is — v) a28(s=1) | T(r— ]+(1)F(]n—2—j+1) (56)
r—sp,—ntr(v ls(s—1 n’s
f(v) det(v)r—se-ntr(v)r~3 ( )m
_ det(Is — v) P(n—j —|— 1) (57)
e iprs LA T(n—r—j+1)
e © I(n—j+1)
— I, — )" 7—s ntr(v) 53
det (s — v) e ]li[nTP(n—r—jJrl) (58)
Hence, 6,., < 2sup,cgp (% - 1). Set M, s, = SupP,cp (% — 1>, so that
Orsm < 2 M, . Differentiation shows that the maximum é% - 1) is attained uniquely for

_ r+8T71 -
v = TIS
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¢ i v n—r—s ntr(v i s I'(n—j+1 .
Let us first ertejgcgvg = cdet(ls — v) e ), with ¢ = TT5_, % independent

of v. Next, computing the derivative with respectitowe will look at first at the partials from the
entries off the diagonal, and secondly at the entries of idigothal.

Case 1: { # j) In this case, we first note th@%e”“(”) = 0, as the trace depends only on the

diagonal. This tells us thagairj% = ce"tr(”)a%”(det(ls —v))"~"~*. Applying the Power Rule
and Chain Rule, we see that ’

af’i’j (det(Iy —v))" " = (n —r — s)(det(I; — v))* 751 837] det(I, — v). Next, we see from

2.1.1 of [12] that2- det (I, —v) = det(L, ~v) tr ((Is — o) 5 (L - 1))). Here, 52 (I, —v)
is a matrix whose only non-zero entry tlie j)-entry, which is a -1. Hence, we see that that
tr ((Is — )7t 83 (L = v)) is (4, 1)-entry of — (I —v)~!. Recall that for an invertible matrix/,
M- = W adj(M) = m C(M)T, whereadj(M) is the adjoint matrix and’(M) is the
cofactor matrix (3.1.2 and 3.1.4 of [12]). Therefore, we e the(j,i)-entry of —(I; — v)~!is

the (i, j)-entry ofm C(I, — v). We may then conclude that

agj % = —ce"" ) (n — ¢ — s)(det(ly — v))" "L C(I, — v)gi;3- We can then see that
this will only be zero wherC(I; — v)y; ;3 is zero, as the first three terms are all positive, and the
determinant term is non-zero a&) is only defined on the set of matrices with batland/; — v
positive definite.

Case 2: { = j). We first apply the Product Rule to see that

afin’ % =c (e"tr(v) (827, (det(Is — v))""“—5> + (det(I; — v))"7* <avimentr(v)>> .

We have already computed the partial derivative of the pafi¢he determinant. In the second
term, we see from a quick application of the chain rule fate™ (*) = nen (). We may then
conclude that ’

0_90) _ o ontr®) (det(T, — o))" (—(n — v — )OI, — v)gigy + ndet(Zy — v) -

avm f(’U)

This will be zero only whem det(Is —v) = (n —r — 5) C(Is — v) {54

We have now classified the critical point%% to be any matrix for which the(i, j) cofactor
of (I, — v) is given by the equation—"-— det(I; — v)d; j, whered; ; is the Kronecker delta.
We have already seen how to express the inverse of a matretnmstof the determinant and the
cofactor matrix, so since we know all of the cofactorsipf- v, we know the inverse aof, — v.
Specifically, [(I; —v); ] = ger=y [ det(L; — v)d;;]. Observe that the matrix on the
right-hand side of the equation is simply the identity mascaled by—"—. Inverting both sides

producesl, — v = 2=2=2], so we see that = (1 — 2=1=) [, = "=,

5"
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Now that we see that this is the only critical point, we wilbghthat it produces a maximum.
All of the following properties are given in|[2]. First, rdtahat a critical point of a concave
function must be a maximum. Second, note that(if) is convex, then so too arep(x), ¢(x +t),
andg(Ax) foranya > 0,t € RM, andM x M matrix A and—¢(x) is concave. Fourth, we know
that the sum, product, and composition of convex functioescanvex. From this last property,
we see that a concave function pre-composed with a convetidunis concave and the product
of a convex function and a concave function is concave. Usirge properties, it is easy to see
that the trace of a matrix is convex, as it is the sum of thegot@ns to the the diagonal elements.
Likewise, from the fact tha{%em = o2 we know thae®* is convex, showing thate” (%) is

convex. Now, we need only show thétt(v) is concave to show the concavity é% — 1, which
is given as Example 3.39 of [2].

Hence, we know that

g((r + s)n7I)

My sn+1= 59
N (CEES A 9)
— _ —17 \n—r—s _ntr((r+s)n=11;) : F(TL —J+ 1)
det(Is — (r + s)n™ " I) e jl;IlnTF(n—r—j+1) (60)
_ o r+s e ns(r—“) > F(TL—]—I—l)
_det<<1 - >I> e jljln’“l“(n—r—j+1) (61)
— (1= r+s s(n—r=s) es(r—l—s) f[ F(n _j + 1) (62)
N n jzln’T(n—r—j—Fl)
:H F(n—j—k‘l) <1_r+s> ot 63)
i n'T(n—r—j+1) n
We would now like to write this in terms of logarithms. To dasthwe first observe that
t
—n/ In(l —z)dz = —n ((z — 1)In(1 —2) — )=} (64)
0
=-n((t—1)In(l —¢t)—1t) (65)
=nt+ (n—nt)In(l —1t). (66)
K r+s
Settingt = £ gives us—n In(l—z)de=(r+s)+(n—r—s)ln <1 - —> Next,
0 n

set

Aj=1n< F((”_jfl) )> —n/o(r+8)/nln(1—w)dw+ln <1— ’”“),

n
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we can writeM,. s, + 1 = []7_, e“i. Now let us writeA; in a more pliable form by noting that

'n—j5+1)
In .
nT(n—r—j+1)

) =InT(n—754+1)—In(C(n—r—7j+1)) —In(n") (67)

n—j n—r—j r
= (Zm@) - ( > ln(i)) - (Zln(n)) (68)
i=1 =1

i=1

— ( ni ln(i)) — (Z 1n(n)> (69)

i=n—j—r+1 =1

= (Zln(n —Jj—k+ 1)) - (Zln(n)) (70)

k=1 1=1

R~ n—j—i+1

B SRSy o
R~ jti—1

—Zln (“T)' (72)

In line 3.10, we have used the fact that foe N, I'(x) = Hf:_f i. In line 3.12, we introduce
the change of indices = (n — j + 1) — ¢, which ranges from 1 wheh = n — j to » when
t=n—j—r+1L

This lets us simplifyA; into the form:

T . . (7-_;’_3)/”
Aj:<21n<1_¥>>—n/o ln(l—m)d$+ln<l—r_£s>.

i=1

Writing A; in this way as sum of three quantities, it is easy to see that< A, for all
j = 1,2,...,s: Only the first depends o, and as;j increases] — <==! is decreasing, so

n

thatln (1 - %) is decreasing. This allows ustotobouhti ., + 1 < [[_;, et = e

Next, we claim that-In(1 — z) is an increasing convex function df,1). To see this, first,
we note that the first derivative;l—, is strictly positive for allz € [0,1), while the second

derivative, C is strictly negative. Next, recall that the graph of a confenction h(x)

1—x)2?
on any intervai[a, b] lies below the graph of the secant line fram, f(a)) to (b, f(b)). Let
lap)(z) = W(ag —a) — In(1 — a) be the function whose graph is the secant line
of —In(1 — z) from (a,—In(1 — a)) to (b, —In(1 — b)). We then have the inequality that
0< —In(l —x) <ly(r)forany0 < a <z < b < 1. In particular, monotonicity of integration

tells us then that < — f; log(l — z)dz < fabl[a,b] (z)dz = %52 (—In(1 — b) — In(1 — a)).

Settinga = =1 andb = %, we then have that
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-n ("i/_”l)/ log(1 — z)dz < 3 (—log(1 — £) —log(1 — =1)). Which we can write as

tlog(l—4) < nf(’/"l log(1 — x)dz — $log(1 — =1). We now have the tools to bountl
nicely:

A= (Zr:ln <1 - %)) —n/o(m)/nmu — 2)dz +1In <1 - T;f) (73)
_ <2iéln <1— %)) —n/O(HS)/nln(l—w)dw—Hn (1— ij) (74)
§<Z%ln<l——>> (Z / N 1—xdx—%ln< Z?)) (75)

(r+s)/n
—n/ In(1 —z)dzx + In <1—T+S> (76)
0 n
"1 i 1 i—1 d o/n
= —In (1——)——111 <1— >> —|—< n/ ln(l—w)dm> (77)
(r+s)/n
—n/ In(1 —z)dz +1n <1—T+S> (78)
0 n
1 r (rts)/n r+s
—§1n<1—ﬁ)—n/r/n ln(l—x)dx—l—ln(l— - > (79)
1 T s+1 r r4+s r4+s
< = —_ ) _ _ _ _
_21n<1 n) ; <ln(1 n>+ln<1 - >>+ln<1 iy ) (80)
S r s—1 r4+s
_—iln(l—ﬁ>— 5 ln<1— - > (81)
s s—1 r+s
< —| = _
e (5 )n(1-m2) -
§—sln<1—r+s> (83)
n

In lines 75-76, we have applied the bound we obtained fornttimeexity argument to one of
the sums of In (1 — £). In lines 77-78, we combine the sums of the logarithms, iparation to
evaluate the single telescoping sum in lines 79. In linesv@yse again the convexity argument to
bound the integral by the sum of two logarithms before ctithgcterms in 81. In line 82, we use
the fact that—In(1 — z) is increasing. Finally, in line 83, sinceln (1 — “£2) > 0, we use the
slightly simpler upper bound fofts — ).

We then have thab/, ., + 1 < e=s*(1-(r+s)/n) — (1- "—“)_52. Hence, we have that

n
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—s2 .. .
Orsm < 2 ((1 — )T 1). To finish the proof, in the case that < s, we repeat these
arguments with their roles reversed. This brings us to tbenmed form:

Or,sn < 2 <(1 - %ﬂ)_(min(r’sy) — 1) = B(r,s;n). O
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