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A NONCOMMUTATIVE DE FINETTI THEOREM FOR BOOLEAN
INDEPENDENCE

WEIHUA LIU

Abstract. We introduce a family of quantum semigroups and its natural coactions
on noncommutative polynomials. We define three invariance conditions for the joint
distribution of sequences of selfadjoint noncommutative random variables associated
with these coactions. For one of the invariance conditions, we show that the joint
distribution of an infinite sequence of noncommutative random variables satisfies it
is equivalent to the fact that the sequence of the random variables is identically dis-
tributed and boolean independent with respect to the conditional expectation onto
its tail algebra. This is a boolean analogue of de Finetti theorem on exchangeable se-
quences. In the end of the paper, we also discuss the other two invariance conditions
which lead to some trivial results.

1. Introduction

In classical probability, the study of random variables with distributional symmetries
was started by the pioneering work of de Finetti on 2-point valued random variables.
One of the most general versions of de Finetti’s work states that an infinite sequence
of random variables, whose joint distribution is invariant under all finite permutations,
is conditionally independent and identically distributed. One can see e.g. [12] for an
exposition on the classical de Finetti theorem for more details. Also, see [11], Hewitt
and Savage considered the distributional symmetries of random variables which are
distributed on X = E × E × E × · · · , where E is a compact Hausdorff space. Later,
in [21], an early noncommutative version of de Finetti theorem was given by Størmer.
His work focused on exchangeable states on the infinite reduced tensor product of C∗-
algebras. Roughly speaking, in noncommutative probability theory, Størmer studied
symmetric states on commuting noncommutative random variables. Recently, in [14],
without the commuting relation, Köstler studied exchangeable sequences of noncom-
mutative random variables in W ∗− probability spaces with normal faithful states. In
classical probability, if the second moment of a real valued random variable is 0, then
the random variable is 0 a.e.. Faithfulness is a natural generalization of this property
in noncommutative probability, readers are refered to [24]. Köstler showed that ex-
changeable sequences of random variables possess some kind of factorization property,
but the exchangeability does not imply any kind of universal relation. In other words,
we can not expect to determine mixed moments of an exchangeable sequence of ran-
dom variables in Speicher’s universal sense [19]. By strengthening “exchangeability” to
invariance under a coaction of the free quantum permutations, in [15], Köstler and Spe-
icher discovered that the de Finetti theorem has a natural analogue in Voiculescu’s free
probability theory(see [24]). Here, free quantum permutations refer to Wang’s quantum
groups As(n) in [27].
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Köstler and Speicher’s work starts a systematic study of the probabilistic symmetries
on noncommutative probability theory. Most of the further projects are developed by
Banica, Curran and Speicher, see [1],[5],[6]. They showed their de Finetti type theo-
rems in both of the classical(commutative) probability theory and the noncommutative
probability theory under the invariance conditions of easy groups and easy quantum
groups, respectively. All these works in noncommutative case are proceeded under the
assumption that the state of the probability space is faithful. This is a natural assump-
tion in free probability theory, because in [7], Dykema showed that the free product of
a family of W ∗-probability spaces with normal faithful states is also a W ∗-probability
space with a normal faithful state. Thus the category of W ∗-probability spaces with
faithful states is closed under the free product construction. Since the family of W ∗-
probability spaces with normal faithful states is a part of W ∗-probability spaces with
normal faithful states, one may ask what happens to probability spaces with states
which are not necessarily faithful. More specific, what is the de Finetti type theorem
for more general noncommutative probability spaces?

Recall that in the noncommutative realm, besides the freeness and the classical in-
dependence, there are many other kinds of independence relations, e.g. monotone in-
dependence [16], boolean independence[20], type B independence [3] and more recently
two-face freeness for pairs of random variables[23]. All these types of independence
are associated with certain products on probability spaces. Among these products, in
[19], Speicher showed that there are only two universal products on the unital non-
commutative probability spaces, namely the tensor product and the free product. The
corresponding independent relations associated with these two universal products are
the classical independence and the free independence. It was also showed in [19] that
there is a unique universal product in the non-unital framework which is called boolean
product. This non-unital universal product provides a way to construct probability
spaces with non-faithful states from probability spaces with faithful states. The more
general noncommutative probability spaces will be defined in section 6 which are called
noncommutative probability spaces with non-degenerated states. We would expect that
boolean independence plays the same role in noncommutative probability spaces with
non-degenerated states as the classical independence and the freeness play in commu-
tative probability spaces and noncommutative probability spaces with faithful states,
respectively. The main purpose of this work is to give certain distributional symme-
tries which can characterize conditionally boolean independence in de Finetti theorem’s
form.

To proceed this work, we will construct a class of quantum semigroups Bs(n)’s and
its sub quantum semigroups Bs(n)’s. Then, we can define a coaction of Bs(n) on the
set of noncommutative polynomials with n-indeterminants. Unlike Bs(n), there are two
natural ways to define coactions of Bs(n) on the set of noncommutative polynomials.
The first way considers the set of noncommutative polynomials as a linear space, the
coaction of Bs(n) defined on the linear space will be called the linear coaction of Bs(n)
on the set of noncommutative polynomials. The second way defines the coaction of
Bs(n) by considering the set of noncommutative polynomials as an algebra, the coaction
of Bs(n) defined as a coaction on the algebra will be called the algebraic coaction of
Bs(n) on the set of noncommutative polynomials. With these three coactions of the
quantum semigroups on the set of noncommutative polynomials with n-indeterminants,
we can describe three invariance conditions for the joint distribution of any sequence of
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n random variables (x1, .., xn). We will show that the invariance conditions determined
by the algebraic coaction of Bs(n) and the coaction of Bs(n) are so strong such that
if the joint distribution of the sequence of n random variables (x1, ..., xn) satisfies one
of the invariance conditions, then x1 = x2 = · · · = xn or x1 = x2 = · · · = xn =
0,respectively. In this paper, we are mainly concerned with the invariance conditions
which are determined by the linear coactions of the quantum semigroups Bs(n)’s. Before
proving the main theorems, we will study tail algebras in W ∗ probability spaces with
non-degenerated normal states. There will be a brief discussion on why we should
consider these more general spaces. Unlike W ∗ probability spaces with faithful normal
states, we will define two kinds of tail algebras, one contains the unit of the original
algebra and the other may not. As Köstler did in [14], we will define our conditional
expectation by taking the WOT limit of “shifts”. One of the differences between our
work and Köstler’ result is that our tail algebra may not contain the unit of the original
algebra. Then, we will prove the following theorem for the two different cases (tail
algebra with the unit of the original algebra or not):

Theorem 1.1. Let (A, φ) be a W ∗-probability space and (xi)i∈N be an infinite sequence
of selfadjoint random variables which generate A as a von Neumann algebra and the
unit of A is (not) contained in the WOT closure of the non unital algebra generated by
(xi)i∈N . Then the following are equivalent:

a) The joint distribution of (xi)i∈N satisfies the invariance condition associated with
the linear coactions of the quantum semigroups Bs(n)’s.

b) The sequence (xi)i∈N is identically distributed and boolean independent with re-
spect to the φ−preserving conditional expectation E onto the non unital(unital)
tail algebra of the (xi)i∈N

One can see the definitions of As(n) and Bs(n) in section 2 and 3 for details. It
should be mentioned here that Wang’s quantum permutation group As(n) is a quotient
algebra of Bs(n) for each n. Moreover, both of the invariance conditions associated
with the linear coactions and the algebraic coactions of the quantum semigroups Bs(n)’s
are stronger than the invariance condition associated with the quantum permutations
As(n)’s

The paper is organized as follows: In Section 2, we recall the basic definitions and
notation from the noncommutative probability theory, Wang’s quantum groups and
exchangeable sequence of random variables. In Section 3, we introduce our quantum
semigroup Bs(n) and its sub quantum semigroups Bs(n). Then, we introduce a linear
coaction of the quantum semigroup Bs(n) on the set of the noncommutative polynomi-
als. We will define an invariance condition associated with the linear coaction of Bs(n).
In section 4, we have a brief discussion on the relation between freeness and boolean
independence. We show that operator valued boolean independence implies operator
valued freeness in some special cases. In section 5, we prove that the joint distribution
of a finite sequence of n boolean independent operator valued random variables are
invariant under the linear coaction of Bs(n). In section 6, we recall the properties of
the tail algebra of any infinite exchangeable sequences of noncommutative variables and
study the properties of the tail algebra under the boolean exchangeable condition. In
section 7, we will prove the main theorems and provide some examples. In section 8,
we define a coaction of Bs(n) and an algebraic coaction of Bs(n) on the set of noncom-
mutative polynomials in n indeterminants. Then, we define the invariance conditions
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associated with these coactions. We will study the set of random variables (x1, ..., xn)
whose joint distribution satisfies one of these invariance conditions.

2. Preliminaries and Notation

2.1. Noncommutative probability space. We recall some necessary definitions and
notation of noncommutative probability spaces. For further details, see texts [15], [17],
[2], [24].

Definition 2.1. A non-commutative probability space (A, φ) consists of a unital alge-
bra A and a linear functional φ : A → C. (A, φ) is called a ∗-probability space if A is
a ∗-algebra and φ(xx∗) ≥ 0 for all x ∈ A. (A, φ) is called a W ∗-probability space if A
is a W ∗-algebra and φ is a normal state on it. We say (A, φ) is tracial if

φ(xy) = φ(yx), ∀x, y ∈ A.

The elements of A are called random variables. Let x ∈ A be a random variable, then
its distribution is a linear functional µx on C[X ]( the algebra of complex polynomials
in one variable), defined by µx(P ) = φ(P (x)).

Note that we do not require the state on W ∗-probability space to be tracial. We will
specify the probability spaces we concern in section 6 and section 8.

Definition 2.2. Let I be an index set, the algebra of noncommutative polynomials in
|I| variables, C〈Xi|i ∈ I〉, is the linear span of 1 and noncommutative monomials of the
form Xk1

i1
Xk2

i2
· · ·Xkn

in
with i1 6= i2 6= · · · 6= in ∈ I and all kj’s are positive integers. For

convenience we will use C〈Xi|i ∈ I〉0 to denote the set of noncommutative polynomials
without constant term.

Let (xi)i∈I be a family of random variables in a noncommutative probability space
(A, φ). Their joint distribution is a linear functional µ : C〈Xi|i ∈ I〉 → C defined by

µ(Xk1
i1
Xk2

i2
· · ·Xkn

in
) = φ(xk1

i1
xk2
i2
· · ·xkn

in
),

and µ(1) = 1.

Remark 2.3. In general, the joint distribution depends on the order of the random
variables, e.g. let I = {1, 2}, then µx1,x2 may not equal µx2,x1. According to our
notation, µx1,x2(X1X2) = φ(x1x2), but µx2,x1(X1X2) = φ(x2x1).

Definition 2.4. Let (A, φ) be a noncommutative probability space, a family of unital
subalgebras (Ai)i∈I is said to be free if

φ(a1 · · · an) = 0,

whenever ak ∈ Aik , i1 6= i2 6= · · · 6= in and φ(ak) = 0 for all k. Let (xi)i∈I be a family
of random variables and Ai’s be the unital subalgebras generated by xi’s, respectively.
We say the family of random variables (xi)i∈I is free if the family of unital subalgebras
(Ai)i∈I is free.

Definition 2.5. Let (A, φ) be a noncommutative probability space, a family of (usually
non-unital) subalgebras {Ai|i ∈ I} of A is said to be boolean independent if

φ(x1x2 · · ·xn) = φ(x1)φ(x2) · · ·φ(xn)
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whenever xk ∈ Ai(k) with i(1) 6= i(2) 6= · · · 6= i(n). A set of random variables {xi ∈
A|i ∈ I} is said to be boolean independent if the family of non-unital subalgebras Ai,
which are generated by xi respectively, is boolean independent.

One refers to [9] for more details of boolean product of random variables. Since the
framework for boolean independence is a non-unital algebra in general, we will not
require our operator valued probability spaces to be unital:

Definition 2.6. An operator valued probability space (A,B, E : A → B) consists of
an algebra A, a subalgebra B of A and a B − B bimodule linear map E : A → B i.e.

E[b1ab2] = b1E[a]b2,

for all b1, b2 ∈ B and a ∈ A. According to the definition in [22], we call E a conditional
expectation from A to B if E is onto, i.e. E[A] = B. The elements of A are called
random variables.

In operator valued free probability theory, A and B are unital and have the same
unit

Definition 2.7. Given an algebra B, we denote by B〈X〉 the algebra which is freely
generated by B and the indeterminant X . Let 1X be the identity of C〈X〉, then B〈X〉
is set of linear combinations of the elements in B and the noncommutative monomials
b0Xb1Xb2 · · · bn−1Xbn where bk ∈ B ∪ {C1X} and n ≥ 1. The elements in B〈X〉
are called B-polynomials. In addition, B〈X〉0 denotes the subalgebra of B〈X〉 which
doesn’t contain the constant term i.e. the linear span of the noncommutative monomials
b0Xb1Xb2 · · · bn−1Xbn where bk ∈ B ∪ {C1X} and n ≥ 1. B〈X〉0.

Given an operator valued probability space (A,B, E : A → B) such that A and B
are unital. A family of unital subalgebras {Ai ⊃ B}i∈I is said to be freely independent
with respect to E if

E[a1 · · · an] = 0,

whenever i1 6= i2 6= · · · 6= in, ak ∈ Aik and E[ak] = 0 for all k. A family of (xi)i∈I is said
to be free independent over B, if the unital subalgebras {Ai}i∈I which are generated by
xi and B respectively is free, or equivalently

E[p1(xi1)p2(xi2) · · ·pn(xin)] = 0,

whenever i1 6= i2 6= · · · 6= in, p1, ..., pn ∈ B〈X〉 and E[pk(xik)] = 0 for all k.
Let {xi}i∈I be a family of random variables in an operator valued probability space
(A,B, E : A → B). A, B are not necessarily unital. {xi}i∈I is said to be boolean
independent over B if for all i1, ..., in ∈ I, with i1 6= i2 6= · · · 6= in and all B-valued
polynomials p1, ..., pn ∈ B〈X〉0 such that

E[p1(xi1)p2(xi2) · · ·pn(xin)] = E[p1(xi1)]E[p2(xi2)] · · ·E[pn(ain)].

2.2. Wang’s quantum permutation groups. In [27], Wang introduced the following
quantum groups As(n)’s.

Definition 2.8. As(n) is defined as the universal unital C∗-algebra generated by ele-
ments uij (i, j = 1, · · ·n) such that we have

• each uij is an orthogonal projection, i.e. u∗
ij = uij = u2

ij for all i, j = 1, ..., n.
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• the elements in each row and column of u = (uij)i,j=1,...,n form a partition of
unit, i.e. are orthogonal and sum up to 1: for each i = 1, · · · , n and k 6= l we
have

uikuil = 0 and ukiuli = 0;

and for each i = 1, · · · , n we have
n∑

k=1

uik = 1 =
n∑

k=1

uki.

As(n) is a compact quantum group in the sense of Woronowicz [26], with comultipli-
cation, counit and antipode given by the formulas:

∆uij =
n∑

k=1

uik ⊗ ukj

ǫ(uij) = δij
S(uij) = uji.

The right coaction of As(n) on C〈X1, ..., Xn〉 is a linear map α : C〈X1, ..., Xn〉 →
C〈X1, ..., Xn〉 ⊗As(n) given by:

α(Xi1Xi2 · · ·Xim) =

n∑

j1,...,jm=1

Xj1Xj2 · · ·Xjm ⊗ uj1,i1uj2,i2 · · ·ujm,im,

where ⊗ denotes the algebraic tensor product.
In the earlier papers, α is defined as an algebraic homomorphism. We emphasis on

the linearity here because we will define some coactions of our quantum semigroups on
noncommutative polynomials in a similar way. The right coaction has the following
property:

(α⊗ id)α = (id⊗ ∆)α.

Let (xi)i∈N be an infinite sequence of random variables in a noncommutative prob-
ability space (A, φ), the sequence is said to be quantum exchangeable if their joint
distribution is invariant under Wang’s quantum permutation groups, i.e. for all n, we
have

µx1,...xn
(p)1As(n) = µx1,...,xn

⊗ idAs(n)(α(p)),

where µx1,...,xn
is the joint distribution of x1, ..., xn with respect to φ and p ∈ C〈X1, ..., Xn〉.

For example, if p = Xi1Xi2 · · ·Xim , then the equation above can be written as:

φ(xi1xi2 · · ·xim)1As(n) = µx1,...xn
((Xi1Xi2 · · ·Xim)1As(n)

= µx1,...,xn
⊗ idAs(n)(

n∑
j1,...,jm=1

Xj1Xj2 · · ·Xjm ⊗ uj1,i1uj2,i2 · · ·ujm,im)

=
n∑

j1,...,jm=1

φ(xj1xj2 · · ·xjm)uj1,i1uj2,i2 · · ·ujm,im ,

whenever i1 6= i2 6= · · · 6= in.
Let Sn be the permutation group on {1, ..., n}. The joint distribution of (xi)i∈N is said
be exchangeable if for all n, σ ∈ Sn, we have

µx1,...xn
= µxσ(1),...,xσ(n)

,

where µx1,...,xn
is the joint distribution of x1, ..., xn with respect to φ . It is showed in

[15] that quantum exchangeability implies classical exchangeability.
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3. Quantum semigroups

Our probabilistic symmetries will be given by the invariance conditions associated
with certain coactions of our quantum semigroups. First, we recall the related defini-
tions and notation of quantum semigroups.

A quantum space is an object of the category dual to the category of C∗-algebras([25]).
For any C∗-algebras A and B, the set of morphisms Mor(A,B) consists of all C∗-algebra
homomorphisms acting from A to M(B), where M(B) is the multiplier algebra of B,
such that φ(A)B is dense in B. If A and B are unital C∗-algebras, then all unital C∗-
homomorphisms from A to B are in Mor(A,B). In [18],

Definition 3.1. By a quantum semigroup we mean a C∗-algebra A endowed with an
additional structure described by a morphism ∆ ∈ Mor(A,A⊗A) such that

(∆ ⊗ idA)∆ = (idA ⊗ ∆)∆.

In other words, ∆ defines a comultiplication on A. Here the tensor product ⊗ denotes
the minimal tensor product ⊗min.
Now, we turn to introduce our quantum semigroups:
Quantum semigroups (Bs(n), ∆): The algebra Bs(n) is defined as the universal
unital C∗-algebra generated by elements ui,j (i, j = 1, · · ·n) and a projection P such
that we have

• each ui,j is an orthogonal projection, i.e. u∗
i,j = ui,j = u2

i,j for all i, j = 1, · · · , n,
•

ui,kui,l = 0 and uk,iul,i = 0,

whenever k 6= l

• For all 1 ≤ i ≤ n, P =
n∑

k=1

uk,iP.

We will denote the unite of Bs(n) by I, the projection P is called the invariant projection
of Bs(n).
On this unital C∗-algebra, we can define a unital C∗-homomorphism

∆ : Bs(n) → Bs(n) ⊗Bs(n)

by the following formulas:

∆ui,j =
n∑

k=1

ui,k ⊗ uk,j

and

∆P = P⊗P, ∆I = I ⊗ I.

We will see that (Bs(n),∆) is a quantum semigroup. To show this we need to check
that ∆ defines a unital C∗-homomorphism from Bs(n) to Bs(n) ⊗ Bs(n) and satisfies
the comultiplication condition :

First, ∆ui,j =
n∑

k=1

ui,k⊗uk,j is a projection because ui,k, uk,j are projections and ui,kui,l =

0 if k 6= l, ui,k ⊗ uk,j’s are orthogonal to each other. Also, ∆P = P⊗P is a projection.
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Let l 6= m, then

∆(ui,l)∆ui,m = (
n∑

k=1

ui,k ⊗ uk,l)(
n∑

j=1

ui,j ⊗ uj,m)

=
n∑

k,j=1

ui,kui,j ⊗ uk,luj,m

=
n∑

k=1

ui,k ⊗ uk,luk,m

= 0.

The same, we have ∆(ul,i)∆um,i = 0, for m 6= l. Moreover, we have

∆(
n∑

l=1

ul,i)∆P = (
n∑

l,k=1

ul,k ⊗ uk,i)P⊗P

=
n∑

l,k=1

ul,kP⊗ uk,iP

=
n∑

k=1

P⊗ uk,iP

= P⊗P.

and ∆ sends the unit of Bs(n) to the unit of Bs(n) ⊗ Bs(n). Therefore, ∆ defines a
unital C∗-homomorphism on Bs(n) by the universality of Bs(n).

The comultiplication condition holds, because on the generators we have:

(∆ ⊗ idA)∆ui,j =

n∑

k,l=1

uik ⊗ uk,l ⊗ ul,j = (idA ⊗ ∆)∆ui,j

(∆ ⊗ idA)∆P = P⊗P⊗P = (idA ⊗ ∆)∆P

(∆ ⊗ idA)∆I = I ⊗ I ⊗ I = (idA ⊗ ∆)∆I.

Therefore, (Bs(n),∆) is a quantum semigroup.

Remark 3.2. If we let the invariant projection to be the identity, then we get Wang’s
free quantum permutation group. Therefore, As(n) is a quotient C∗-algebra of Bs(n),
i.e. there exists a unital C∗-homomorphism β : Bs(n) → As(n) such that β is surjective.

Now, we provide some nontrivial representations of Bs(n)’s:
Let C6 be the standard 6-dimensional complex Hilbert space with orthonormal basis
v1, ..., v6. Let

P11 = Pv1+v2 , P21 = Pv3+v4 , P13 = Pv5+v6 ,
P21 = Pv3+v6 , P22 = Pv5+v2 , P23 = Pv1+v4 ,
P31 = Pv4+v5 , P32 = Pv1+v6 , P33 = Pv2+v3 .

and P = Pv1+v2+v3+v4+v5+v6 , where Pv denotes the one dimensional orthogonal projec-
tion onto the subspace spaned by v. Then the unital algebra generated by Pi,j and P
gives a representation π of Bs(3) on C6 by the following formulas on the generators of
Bs(3):

π(I) = IC6 , π(ui,j) = Pij , π(P) = P.
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π is well defined by the universality of Bs(3).
Moreover, the matrix form for P1,1 and P with respect to the basis are

P11 = 1/2




1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




and P = 1/6




1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




,

then we have

PP11P = 1/18




1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




= 1/3P.

In general,we have

Lemma 3.3. Let v1, ..v2n be an orthonormal basis of the standard 2n−dimensional
Hilbert space C2n, and let vk = vk+2n for all k ∈ Z, let

Pi,j = Pv2(i−j)+1+v2(j−i)+2
,

where Pv is the orthogonal projection the one dimensional subspace generated by the
vector v and P = Pv1+v2+···+v2n, 1 is the identity of B(C2n) . Then {Pi,j}i,j=1,...,n, P
and 1 satisfy the defining conditions of the algebra Bs(n),

Proof. It is easy to see that the inner product

〈v2(i−j)+1 + v2(j−i)+2, v2(i−k)+1 + v2(k−i)+2〉 = 2δj,k,

so PikPij = 0 if j 6= k. The same PkiPji = 0 if k 6= j. Fix i, we see that v1+v2+· · ·+v2n ∈

span{v2(i−j)+1 + v2(j−i)+2|j = 1, ...n}, so
n∑

k=1

PikP = P. �

Therefore, by lemma 3.3, there exists a representation π of Bs(n) on C2n which is
defined by the following formulas:

π(1Bs(n)) = 1, π(P) = P

and

π(ui,j) = Pi,j,

for all i, j = 1, ..., n.
Now, we turn to introduce a sub quantum semigroup of (Bs(n),∆). Since P 6= I is a
projection in Bs(n), Bs(n) = PBs(n)P is a C∗-algebra with identity P and generators

{Pui1,j1 · · ·uik,jkP|i1, j1, ...ik, jk ∈ {1, ...n}, k ≥ 0}.

If we restrict the comultiplication ∆ onto Bs(n), then we have

∆(Pui1,j1 · · ·uik,jkP) = (P⊗P)(

n∑

l1,...lk=1

ui1,l1 · · ·uik,lk ⊗ ul1,j1 · · ·ulk,jk)(P⊗P),
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which is contained in Bs(n)⊗Bs(n). Therefore, (Bs(n),∆) is also a quantum semigroup
and P is the identity of Bs(n). We will call Bs(n) the boolean permutation quantum
semigroup of n.

Remark 3.4. If we require Pui,j = ui,jP for all i, j = 1, ..., n, then the universal
algebra we constructed in the above way is exactly Wang’s quantum permutation group.
Therefore, As(n) is also a quotient algebra of Bs(n).

In the following definition, ⊗ denotes the tensor product for linear spaces:

Definition 3.5. Let S = (A,∆) be a quantum semigroup and V be a complex vector
space, by a (right) coaction of the quantum group S on V we mean a linear map  L :
V → V ⊗A such that

( L ⊗ id) L = (id ⊗ ∆) L.

We say a linear functional ω : V → C is invariant under  L if

(ω ⊗ id) L(v) = ω(v)IA,

where IA is the identity of A.
Given a complex vector space W, We say a linear map T : V → W is invariant under
 L if

(T ⊗ id) L(v) = T (v) ⊗ IA.

Remark 3.6. This definition is about coactions on linear spaces but not coactions on
algebras.

Let C〈X1, ..., Xn〉 be the set of noncommutative polynomials in n indeterminants,
which is a linear space over C with basis Xi1 · · ·Xik for all integer k ≥ 0 and i1, ..., ik ∈
{1, ...n}.
Now, we define a right coaction  Ln of Bs(n) on C〈X1, ..., Xn〉 as follows:

 Ln(Xi1 · · ·Xik) =

n∑

j1,...jk=1

Xj1 · · ·Xjk ⊗Puj1,i1 · · ·ujn,inP.

It is a well defined coaction of Bs(n) on C〈X1, ..., Xn〉, because:

( Ln ⊗ id) Ln(Xi1 · · ·Xik)

= ( Ln ⊗ id)
n∑

j1,...jk=1

Xj1 · · ·Xjk ⊗Puj1,i1 · · ·ujn,inP

=
n∑

j1,...jk=1

n∑
l1,...lk=1

Xl1 · · ·Xlk ⊗Pul1,j1 · · ·uln,jnP⊗Puj1,i1 · · ·ujn,inP

=
n∑

l1,...lk=1

Xl1 · · ·Xlk ⊗ (
n∑

j1,...jk=1

Pul1,j1 · · ·uln,jnP⊗Puj1,i1 · · ·ujn,inP)

=
n∑

l1,...lk=1

Xl1 · · ·Xlk ⊗ (∆Pul1,i1 · · ·uln,inP)

= (id⊗ ∆)
n∑

j1,...jk=1

Xl1 · · ·Xlk ⊗ (Pul1,i1 · · ·uln,inP)

= (id⊗ ∆) Ln(Xi1 · · ·Xik).

We will call  Ln the linear coaction of Bs(n) on C〈X1, ..., Xn〉. The algebraic coaction
will be defined in section 7.
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Lemma 3.7. Let  Ln be the linear coaction of Bs(n) on C〈X1, ..., Xn〉, {ui,j}i,j=1,...n and
P be the standard generators of Bs(n). Then,

 Ln(p1(Xi1) · · ·pk(Xik)) =

n∑

j1,...jk=1

p1(Xj1) · · · pk(Xjk) ⊗Puj1,i1 · · ·ujk,ikP,

for all i1 6= i2 6= · · · 6= ik and p1, ...pk ∈ C〈X〉.

Proof. Since the map is linear, it suffices to show that the equation holds by assuming
pl(X) = X tl where tl ≥ 1 for all l = 1, ...k. Then, we have

 Ln(xi1 · · ·xi1︸ ︷︷ ︸
t1 times

· · ·xi1 · · ·xik︸ ︷︷ ︸
tk times

)

=
n∑

j1,1,...j1,t1 ,...,jk,1,...jk,tk=1

xj1,1 · · ·xj1,t1
· · ·xjk,1 · · ·xjk,tk

⊗Puj1,1i1 · · ·uj1,t1 i1
· · ·P.

Notice that ujm,simujm,s+1im = δjm,s,jm,s+1ujm,sim , the right hand side of the above equa-
tion becomes

n∑

j1,...,jk=1

xt1
j1
· · ·xtk

jk
⊗Puj1i1 · · ·ujk,jkP.

The proof is now completed �

We will be using the following invariance condition to characterize conditionally
boolean independence.

Definition 3.8. Let (A, φ) be a noncommutative probability space and (xi)i∈N be an
infinite sequence of random variables in A, we say the joint distribution satisfies the
invariance conditions associated with the linear coactions of the boolean quantum per-
mutation semigroups Bs(n) if for all n, we have

µx1,...,xn
(p)P = µx1,...,xn

⊗ idBs(n)( Lnp)

for all p ∈ C〈X1, ..., Xn〉, where µx1,...xn
is the joint distribution of x1, ..., xn.

Let {ūij}i,j=1,..,n be the standard generators of As(n), and {uij}i,j=1,..,n ∪ {P} be the
standard generators of Bs(n), then there exists a C∗-homomorphism β : Bs(n) → As(n)
such that:

β(uij) = ūij, β(P) = 1As(n).

The C∗-homomorphism is well defined because of the universality of Bs(n). Let p =
Xi1 · · ·Xik ∈ C〈X1, ..., Xn〉, then

µx1,...,xn
(p)P = µx1,...,xn

⊗ idBs(n)( Lnp)

implies
µx1,...,xn

(p)P = µx1,...,xn
⊗ idBs(n)( Lnp)

µx1,...,xn
(Xi1 · · ·Xik)P =

n∑

j1,...jk=1

(µx1,...,xn
⊗ idBs(n))(Xj1 · · ·Xjk ⊗Puj1,i1 · · ·ujn,inP).

Now, apply β on both sides of the above equation, we get

µx1,...,xn
(Xi1 · · ·Xik)1As(n) =

n∑

j1,...jk=1

(µx1,...,xn
⊗ idAs(n))(Xj1 · · ·Xjk ⊗ ūj1,i1 · · · ūjn,in),
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which is the free quantum invariance condition. Since p is arbitrary, we have the
following:

Proposition 3.9. Let (A, φ) be a noncommutative probability space and (xi)i=1,...,n be a
sequence of random variables in A, the joint distribution of (xi)i=1,...,n is invariant under
the free quantum permutations As(n) if it satisfies the invariance condition associated
with the linear coaction of the boolean quantum permutation semigroup Bs(n).

4. Boolean independence and freeness

In this section, we will show that operator valued boolean independent variables are
sometimes operator valued free independent. Therefore, we should not be surprised
that the joint distribution of any sequence of identically boolean independent random
variables is invariant under the coaction of the free quantum permutations. Especially,
in section 7, operator valued boolean independent variables are always operator valued
free independent when we construct our conditional expectation in the unital-tail alge-
bra case. The properties are related to the C∗− algebra unitalization. We provide a
brief review here:
To every C∗ algebra A one can associate a unital C∗ algebra Ā which contains A as a
two-sided ideal and with the property that the quotient C∗-algebra Ā/A is isomorphic
to C. Actually, Ā = {xĪ + a|x ∈ C, a ∈ A}, where Ī is the unit of Ā. We will denote
xĪ + a by (x, a) where x ∈ C and a ∈ A, then we have

(x, a) + (y, b) = (x + y, a + b), (x, a)(y, b) = (xy, ab + a + b), (x, a)∗ = (x̄, a∗).

Let (A,B, E) be an operator-valued probability space where A and B are not nec-
essarily unital. Let Ā and B̄ be the unitalization defined above, then we can extend ρ
to ρ̄ s.t (Ā, B̄, Ē) is also an operator-valued probability space where Ē is a conditional
expectation on Ā.
It is natural to define Ē as

Ē[x, a] = (x, E[a]).

Ē[(1, 0)] = (1, 0), so Ē is unital. The linear property is easy to check.
Take (x1, b1), (x2, b2) ∈ B̄ and (y, a) ∈ Ā, we have

Ē[(x1, b1)(y, a)(x2, b2)] = Ē[x1yx2, x1x2a + yx2b + x2b1a + x1b2 + yb1b2 + b1ab2]
= (x1yx2, E[x1x2a + yx2b + x2b1a + x1b2 + yb1b2 + b1ab2)]
= (x1yx2, x1x2E[a] + yx2b + x2b1E[a] + x1b2 + yb1b2 + b1E[a]b2)
= (x1, b1)(y, E[a])(x2, b2)
= (x1, b1)Ē[(y, a)](x2, b2).

It is obvious that Ē2 = Ē. Hence, Ē is a B̄-B̄ bimodule from the unital algebra Ā to
the unital subalgebra B̄, i.e. a conditional expectation.

Proposition 4.1. Let (A,B, E) : A → B be an operator valued probability space,
{Ai}i∈I be a B-boolean independent family of sub-algebras and B ⊂ Ai for all i. Then,
in the unitalization operator probability space (Ā, B̄, Ē), {Āi}i∈I is a B̄-free independent
family of sub-algebras.

Proof. Let (x, a) ∈ Ā, where a ∈ A and x is a complex number, then Ē[(x, a)] =
(x, E[a]), thus Ē[(x, a)] = 0 iff x = 0 and E[a] = 0.
Now, we can check the freeness directly. Let (xk, ak) ∈ Āik , i.e ak ∈ Aik and xi’s are
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complex numbers, for k = 1, · · · , n and Ē[xk, ak] = 0 and i1 6= i2 6= · · · 6= in, then we
have xk = 0 for all k = 1, · · · , n and

Ē[(x1, a1)(x2, a2) · · · (xn, an)] = Ē[(0, a1)(0, a2) · · · (0, an)]
= Ē[(0, a1a2 · an)]
= (0, E[a1a2 · · · an)]
= (0, E[a1]E[a2] · · ·E[an])
= (0, 0) = 0.

and B̄ ⊂ Āi for all i. �

The examples for this proposition will be given in section 7.3. By checking the
conditions for operator valued freeness directly as we did in the above theorem, we
have

Corollary 4.2. Let (A,B, E) : A → B be an operator valued probability space, {B ⊂
Ai}i∈I be a B-free independent family of sub-algebras. Then, in their unitalization oper-
ator probability space (Ā, B̄, Ē), {Āi}i∈I is a B̄-free independent family of sub-algebras.

5. operator valued Boolean random variables are invariant under

Boolean quantum permutations

Let Bs(n) be the boolean permutation quantum semigroup of n with standard gen-
erators {ui,j}i,j=1,··· ,n and P. In this section, we prove that the joint distribution of n
boolean independent operator valued random variables are invariant under the linear
coactions of Bs(n). The following equality is the key to the proof of the statement:
Fix k and 1 ≤ i1, · · · , ik ≤ n, we have

n∑
j1,··· ,jk=1

Pui1,j1 · · ·uik,jkP

=
n∑

j1,··· ,jk−1=1

Pui1,j1 · · ·uik−1,jk−1(
n∑

jk=1

uik,jkP)

=
n∑

j1,··· ,jk−1=1

Pui1,j1 · · ·uik−1,jk−1P

= · · · = P.

According to the definition of Bs(n), it follows that the product ui1,j1 · · ·uik,jk is not
vanishing only if it satisfies that it 6= it+1 whenever jt 6= jt+1 for all 1 ≤ t ≤ k − 1.

Given a set S, a collection of disjoint nonempty sets P = {Vi|i ∈ I} is called a
partition of S if

⋃
i∈I

Vi = S, Vi ∈ P is called a block of the partition P . Let S be a finite

ordered set, then all the partitions of S have finite blocks. A partition P = {V1, · · ·Vr}
of S is interval if there are no two distinct blocks Vi and Vj and elements a, c ∈ Vi and
b, d ∈ Vj s.t. a < b < c or b < c < d. An interval partition P = {Ws|1 ≤ s ≤ r} is
ordered if a < b for all a ∈ Ws, b ∈ Wt and s < t. We denote by PI(S) the collection of
ordered interval partitions of S.

Let I be an index set, [k] = {1, · · · , k} is an ordered set with the natural order. Let
Ik = I × I × · · · × I be the k-fold Cartesian product of the index set I. A sequence
of indices (im)m=1,··· ,k ∈ Ik is said to be compatible with an ordered interval partition
P = {W1, · · · ,Wr} ∈ PI([k]) if ia = ib whenever a, b are in the same block and ia 6= ib
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whenever a, b are in two consecutive blocks, i.e. Ws and Ws+1 for some 1 ≤ s ≤ r. One
should pay attention that ia = ib is allowed for a ∈ Ws and b ∈ Ws+2 for some 1 ≤ s ≤ r

Now, we define an equivalent relation ∼PI([k]) on Ik: two sequences of indices

(im)m=1,··· ,k ∼PI([k]) (jm)m=1,··· ,k

if the two sequences are both compatible with an ordered interval partition P ∈ PI([k]).

Let J = (im)m=1,··· ,k,J
′ = (jm)m=1,··· ,k ∈ {1, ..., n}k, we denote Pui1,j1ui2,j2 · · ·uik,jkP

by UJ ,J ′.

Lemma 5.1. Fix k ∈ N, let Bs(n) be the boolean permutation quantum semigroup with
standard generators {ui,j}i,j=1,··· ,n and P. Let J1 = (i1, · · · , ik),J2 = (j1, · · · , jk) ∈ [n]k

be two sequences if indices. Then, the product UJ1,J2 is not vanishing if J1 ∼PI([k]) J2

Proof. Suppose Ji is compatible with an ordered interval partition Pi for i = 1, 2. Let
P1 = {W1, · · · ,Wr1} and P2 = {W ′

1, · · · ,W
′
r2
}, then P1 6= P2 implies that there exists a

t such that Wt 6= W ′
t for some 1 ≤ t ≤ min{r1, r2}. Take the smallest t, then Ws = W ′

s

whenever s < t and Wt 6= W ′
t . Then, these two intervals begin with the same number

but end with different numbers, in other words , we have either Wt $ W ′
t or W ′

t $ Wt.
Without loss of generality, we assume Wt $ W ′

t , then there is a number q s.t q ∈ Wt

but q + 1 6∈ Wt and q, q + 1 ∈ W ′
t . Now, we have iq 6= iq+1 and jq = jq+1, thus

UJ1,J2 = Pui1,j1 · · ·uiq,jquiq+1,jq+1 · · ·uik,jkP = 0.

�

Lemma 5.2. Let (A,B, E : A → B) be an operator valued probability space. Let
(xi)i=1,...,n be a sequence of n random variables which are identically distributed and
boolean independent with respect to E. Given two sequences of indices J = (iq)q=1,··· ,k,
J ′ = (jq)q=1,··· ,k ∈ [n]k and J ∼PI([n]) J

′, then

E[xi1b1xi2b2 · · · bk−1xik)] = E[xj1b1xj2b2 · · · bk−1xjk ],

where b1, · · · , bk−1 ∈ B ∪ {IA}.

Proof. Suppose that J and J ′ are compatible with an ordered interval partition P =
{W1, · · · ,Wr}. Assume that W1 = {1, · · · , k1}, W2{k1 + 1, · · · , k2},...,Wr = {kr−1 +
1, · · · , k)}, then ikt 6= ikt+1 and jkt 6= jkt+1 for t = 1, ..., r. For convenience, we let
kr = k, k0 = 0 and bk = IA, we have

E[xi1b1xi2b2 · · · bk−1xik ]
= E[xi1b1xi2b2 · · · bn−1xikbk]

= E[
r∏

s=1

(
ns∏

t=ns−1+1

xitbt)]

=
r∏

s=1

E[
ns∏

t=ns−1+1

xitbt)]

=
r∏

s=1

E[
ns∏

t=ns−1+1

xjtbt]

= E[
r∏

s=1

ns∏
t=ns−1+1

xjtbt]

= E[xj1b1xj2b2 · · · bk−1xjk ].

�
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We will write ∼PI
short for ∼PI ([k]) when there is no confusion.

Theorem 5.3. Let (A,B, E : A → B) be an operator valued probability space, A be
unital and {xi}i=1,...,n be a sequence of n random variables in A which is identically
distributed and boolean independent with respect to E. Let φ be a linear functional on
B and φ̄ is a linear functional on A where φ̄(·) = φ(E[·]). Then, the joint distribution
of the sequence {xi}i=1,...,n with respect to φ̄ is invariant under the linear coaction of the
boolean permutation quantum semigroup Bs(n).

Proof. Fix k ∈ N, and indices 1 ≤ i1, · · · , ik ≤ n, and b1, · · · , bk−1 ∈ B ∪ {IA}, where
IA is the unit of A, by the two lemmas above we have

n∑
j1,j2,··· ,jk=1

E[xj1b1xj2b2 · · · bk−1xjk ] ⊗Pui1,j1 · · ·uik,jkP

=
n∑

j1,j2,··· ,jk=1
(js)s=1,...,k∼PI

(it)t=1,...,k

E[xj1b1xj2b2 · · · bk−1xjk ] ⊗Pui1,j1 · · ·uik,jkP

=
n∑

j1,j2,··· ,jk=1
(js)s=1,...,k∼PI

(it)t=1,...,k

E[xi1b1xi2b2 · · · bk−1xik ] ⊗Pui1,j1 · · ·uik,jkP

=
k∑

j1,j2,··· ,jn=1

E[xi1b1xi2b2 · · · bk−1xik ] ⊗Pui1,j1 · · ·uik,jkP

= E[xi1b1xi2b2 · · · bk−1xik ] ⊗P.

Let b1, ..., bk−1 = 1A and let φ ⊗ idBs(n) act on the two sides of the above equation
then we have

φ̄(xi1xi2 · · ·xik)P
= φ̄(xi1xi2 · · ·xik)P

=
n∑

j1,j2,··· ,jk=1

φ̄(xj1xj2 · · ·xjn)Pui1,j1 · · ·uik,jkP,

which is our desired conclusion. �

6. Properties of Tail Algebra for Boolean Independence

In order to study boolean exchangeable sequences of random variables, we need to
choose a suitable kind of noncommutative probability spaces. It is pointed by Hasebe
[10] that the W ∗-probability with faithful normal states does not contain boolean inde-
pendent random variables with Bernoulli law. Therefore, in our work,I it is necessary
to consider W ∗ probability spaces with more general states rather than faithful states:

Definition 6.1. Let A be a von Neumann algebra, a normal state φ on A is said to be
non-degenerated if x = 0 whenever φ(axb) = 0 for all a, b ∈ A.

Remark 6.2. By proposition 7.1.15 in [13], if φ is a non-degenerated normal state on
A then the GNS representation associated to φ is faithful. A faithful normal state on
A is faithful on all A’s subalgebras but a non-degenerated normal state on A may not
be necessarily non-degenerated on A’s subalgebras.

Let (A, φ) be a W ∗-probability space with a non-degenerated normal state φ. Sup-
pose A is generated by an infinite sequence of random variables {xi}i∈N, whose joint
distribution is invariant under the linear coaction of the quantum semigroups Bs(n).
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Let A0 be the non-unital algebra over C generated by {xi}i∈N. In this section, we as-
sume that the unit 1A of A is contained in the weak closure of A0. We will denote the
GNS construction associated to φ by (H, ξ, π), then there is a linear map ·̂ : A0 → H
such that â = π(a)ξ for all a ∈ A0. In the usual sense, the tail algebra Atail of {xi}i∈N
is defined by:

Atail =
∞⋂

n=1

vN{xk|k ≥ n},

where vN{xk|k ≥ n} is the von Neumann algebra generated by {xk|k ≥ n}. We will
call Atail unital tail algebra in this paper. In this section, the range algebra we use is
a ”non-unital tail algebra” T . The non-unital tail algebra T of {xi}i∈N is given by the
follows:

T =

∞⋂

n=1

W ∗{xk|k ≥ n},

where W ∗{xk|k ≥ n} is the WOT closure of the non-unital algebra generated by
{xk|k ≥ n}. If the unit of A is contained in T , then T is also the unital tail-algebra
of {xi}i∈N. For convenience, we denote An by the non-unital algebra generated by
{xk|k > n}. Now, we turn to define our T -linear map, the method comes from [15].
Because we are dealing with von Neumann algebras with non-degenerated normal states
which are more general than the faithful states, it is necessary to provide a complete
construction here. In [14],the normal conditional expectation Köstler constructed via
the shift of the random variables requires the sequence only to be spreadable. But in
our situation, the existence of the normal linear map relies on the invariance under the
quantum semigroups Bs(n)’s.

Lemma 6.3. Let A be a von Neumann algebra generated by an infinite sequence of
selfadjoint random variables (xi)i∈N, φ be a non-degenerated normal state on A. If the

sequence (xi)i∈N is exchangeable in (A, φ), then there is a C∗−isomorphism α : A
‖·‖
0 →

A
‖·‖
1 such that,

α(xi) = xi+1,

for all i ∈ N, where A
‖·‖
i is the C∗−algebra generated by Ai.

Proof. Let (H, ξ, π) be the GNS construction associated to φ, it follows that {â|a ∈ A0}
is dense in H. For each n ∈ N, denote by A[n] the non-unital algebra generated by

{xi|i ≤ n}. Then
∞⋃
n=1

{π(a)ξ|a ∈ A[n]} is dense in H. Given y ∈
∞⋃
n=1

A[n], there exists N ∈

N such that y ∈ A[N ]. We can assume y = p(x1, ..., xN ) for some p ∈ C〈X1, ..., XN〉0,
then we have

‖π(p(x1, ..., xN ))ξ‖2 = φ(π(p(x1, ..., xN)∗(p(x1, ..., xN)))
= φ(p(x2, ..., xN+1)

∗(p(x2, ..., xN+1))
= ‖π(p(x2, ..., xN+1))ξ‖

2

We can define an isometry U from H to its subspace H1 which is generated by
{â|a ∈ A1} by the following formula:

Uπ(xi1 · · ·xik)ξ = π(xi1+1 · · ·xik+1)ξ,
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for all i1, ..., ik ∈ N.

Since φ gives a faithful representation to A, it gives a faithful representation to A
‖·‖
0 .

For all y ∈ A1, according to the faithfulness, we have

‖y‖2 = sup{
〈y∗yâ, â〉

〈â, â〉
|a ∈ A0, â 6= 0} = sup{

φ(a∗y∗ya)

φ(a∗a)
|a ∈ A0, φ(a∗a) 6= 0}.

Denote by (H′, ξ′, π′) the GNS representation of A1 associated to φ. Indeed, H′ can
treated as H1. Because the identity of A is contained in the weak∗-closure of the non
unital algebra generated by (xi)i∈N, by the Kaplansky density theorem, there exists

a bounded sequence {yi|‖yi‖ ≤ 1} ∈
∞⋃
n=1

A[n] such that yi converges to 1A in WOT.

Therefore, π(yi)ξ converges to ξ in norm. Again, by the exchangeability of (xi)i∈N and

Uπ(yi)ξ ∈ {b̂|b ∈ A1} for all i, we have

‖Uπ(yi)ξ‖ = ‖π(yi)ξ‖ ≤ 1

and

〈Uπ(yi)ξ, ξ〉 = 〈π(yi)ξ, ξ〉 → 1.

Therefore, Uπ(yi)ξ converges to ξ in norm, namely, ξ ∈ H1.
Let x ∈ A1, then x = p(x2, ...xN+1) for some N and p ∈ C〈X1, ..., XN〉0. For every

y ∈ A0 there exists an M , such that y = p′(x1, ..., xM) for some p′ ∈ C〈X1, ..., XM〉0.
By the exchangeability, we send x1 to xN+M . Then

‖π(x)ŷ‖2H = φ(p′(x1, ..., xM )∗p(x2, ...xN+1)
∗p(x2, ...xN+1)p

′(x1, ..., xM ))
= φ(p′(xM+N , ..., xM)∗p(x2, ...xN+1)

∗p(x2, ...xN+1)p
′(xN+M , x2, x3..., xM))

= ‖π′(x) ̂p′(xM+N , x2..., xM ))‖2H′

and

‖ ̂p′(x1, ..., xM))‖H = ‖ ̂p′(xM+N , x2..., xM ))‖H′ .

Therefore, we get

{
‖π(x)â‖H
‖â‖H

|a ∈ A0, â 6= 0} ⊆ {
‖π′(x)â‖H′

‖â‖H′

|a ∈ A1, â 6= 0},

which implies

‖x‖ = ‖π(x)‖ = sup{
‖πxâ‖H
‖â‖H

|a ∈ A0, â 6= 0} ≤ sup{
‖π′(x)â‖H′

‖â‖H′

|a ∈ A1, â 6= 0} = ‖π′(x)‖.

It follows that ‖x‖ = ‖π′(x)‖ for all x ∈ A1. By taking the norm limit, we have

‖x‖ = ‖π′(x)‖ for all x ∈ A
‖·‖
1 , so the GNS representation of A

‖·‖
1 associated to φ is

faithful.
Now, we turn to define our C∗-isomorphism α:
Since U is an isometric isomorphism from H to H′, we define a homomorphism α′ :
π(A0) → B(H′) by the following formula

α′(y) = UyU∗,

for y ∈ π(A0). Let y ∈ π(A[n]), then y = π(p(x1, ..., xn)) for some p ∈ C〈X1, ..., Xn〉0.

For all v ∈
∞⋃
n=2

{π(a)ξ|a ∈ A[n] ⊂ H′, there exists N ∈ N and p1 ∈ C〈X1, ...XN〉0 such
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that v = π(p1(x2, ..., xN+1))ξ. We have

α′(y)v = Uπ(p(x1, ..., xn)U∗π(p1(x2, ..., xN+1))ξ
= Uπ(p(x1, ..., xn)π(p1(x1, ..., xN))ξ
= Uπ(p(x1, ..., xn)p1(x1, ..., xN))ξ
= π(p(x2, ..., xn+1)p1(x1, ..., xN+1))ξ

.

Since
∞⋃
n=2

{π(a)ξ|a ∈ A[n] is dense in H1, we get α′(π(p(x1, ..., xn)) = π(p(x2, ..., xn+1)).

Because (H, ξ, π) and (H′, ξ′, π′) are faithful GNS representations for A0 and A1 re-
spectively, there is a well defined norm preserving homomorphism α : A0 → A1, such

that α(xi) = xi+1 for all i ∈ N. Therefore, α extends to a C∗-isomorphism from A
‖·‖
0 to

A
‖·‖
1 . �

Since W ∗{xk|k ≥ n}’s are WOT closed, their intersection is a WOT closed subset of
A. Following the proof of proposition 4.2 in [15], we have

Lemma 6.4. For each a ∈ A0, {αn(a)}n∈N is a bounded WOT convergent sequence.
Therefore, there exists a well defined φ-preserving linear map E : A0 → T by the
following formula:

E[a] = w∗ − lim
n∞

αn(a)

for a ∈ A0

Proof. By lemma 6.3, there is a norm preserving endomorphism α of A0 such that

φ ◦ α = φ and α(xi) = xi+1.

For I ⊂ N, denote by AI the non-unital algebra generated by {xi|i ∈ I}. Suppose
a, b, c ∈

⋃
|I|<∞

AI , we can assume a ∈ AI ,b ∈ AJ and c ∈ AK for some finite sets

I, J,K ⊂ N. Because I, J,K are finite, there exists an N such that (I∪K)∩(J+n) = ∅,
for all n > N . We infer from the exchangeability that φ(aαn(b)c) = φ(aαn+1(b)c) for
all n > N . This establishes the limit

lim
n→∞

φ(aαn(b)c)

on the weak∗-dense algebra
⋃

|I|<∞

AI . We conclude from this and {αn(b)}n∈N is bounded

that the pointwise limit of the sequence α defines a linear map E : A0 → A such that
E(A0) ⊂ T .

�

To extend E to the W ∗−algebra A, we need to make use of the boolean invariance
conditions.

Lemma 6.5. Let (A, φ) be a noncommutative probability space, {xi}i∈N ⊂ A be an
infinite sequence of random variables whose joint distribution is invariant under the
linear coactions of the quantum semigroups Bs(k)’s, then

φ(xk1
i1
xk2
i2
· · ·xkn

in
) = φ(xk1

1 xk2
2 · · ·xkn

n ),

whenever i1 6= i2 6= · · · 6= in, and k1, ..., kn ∈ N
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Proof. If il 6= im for all l 6= m, then the statement holds by the exchangeability of
the sequence. Suppose the number il appears m times in the sequence, which are
{ilj}j = 1, ..., m such that ilj = il and l1 < l2 < · · · < lm. Since the sequence is finite,
with out losing generality, we can assume that i1, ..., in ≤ N + 1 and ilj = N + 1 for
some N by the exchangeability.

For each M ∈ N, by lemma 4.2, we have the following representation πM of the
quantum semigroup Bs(M + N):

πM (ui,j) =

{
Pi−N,j−N , if min{i, j} > N
δi,jP, if min{i, j} ≤ N

,

and π(P) = P , where pi,j and p are projections in B(C2M )given by lemma 4.2. Then
we have

PPi,jP =
1

M
P,

for 1 ≤ i, j ≤ N .
According to the boolean invariance condition, we have:

φ(xk1
i1
xk2
i2
· · ·xkn

in
)P

=
M+N∑

j1,j2,...jn=1

φ(xk1
i1
xk2
i2
· · ·xkn

in
)Puj1,i1 · · ·ujn,inP

=
N∑

jl1 ,jl2 ,...jlm=1

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

)PPjl1 ,il1
PPjl2 ,il2

P · · ·ujlm ,ilm
P

= 1
Mm

N∑
jl1 ,jl2 ,...jlm=1

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

)P

= 1
Mm [

N∑
jls 6=jlt if s 6=t

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

)P +
N∑

jls=jlt for some s 6=t

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

)P ].

In the first part of the sum, by the exchangeability, it follows that

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

) = φ(xk1
i1
· · ·x

kl1
N+1 · · ·x

kl2
N+2 · · ·x

kn
in

),

where we sent jls to N + s. Then, we have

1

Mm

N∑

jls 6=jlt if s 6=t

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

)P =

m−1∏
s=0

(M − s)

Mm
φ(xk1

i1
· · ·x

kl1
N+1 · · ·x

kl2
N+2 · · ·x

kn
in

)P,

which converges to φ(xk1
i1
· · ·x

kl1
N+1 · · ·x

kl2
N+2 · · ·x

kn
in

)P as M goes to ∞.
To the second part of the sum, we have

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

) ≤ ‖xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in
‖ ≤ ‖xk1+···+kn

1 ‖,

which is bounded, therefore,

|
1

Mm

N∑

jls=jlt for some s 6=t

φ(xk1
i1
· · ·x

kl1
jl1

· · ·x
kl2
jl2

· · ·xkn
in

)| ≤ (1 −

m−1∏
s=0

(M − s)

Mm
)‖xk1+···+kn

1 ‖
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goes to 0 as M goes to ∞. By now, we have showed that if there are indices is = it for
s 6= t in the the sequence, we can, with out changing the value of the mixed moments,
change them to two different large numbers js, jt such that js, jt differ the other indices.
After a finite steps, we will have

φ(xk1
i1
xk2
i2
· · ·xkn

in
) = φ(xk1

j1
xk2
j2
· · ·xkn

jn
),

such that all the jl’ are not equal to any of the other indices. By the exchangeability,
the proof is complete. �

Corollary 6.6. Let {xi}i∈N ⊂ (A, φ) be an infinite sequence of random variables whose
joint distribution is invariant under the linear coactions of the quantum semigroups
Bs(k)’s, then

φ(xk1
i1
xk2
i2
· · ·xkn

in
) = φ(xk1

j1
xk2
j2
· · ·xkn

jn
),

whenever i1 6= i2 6= · · · 6= in,, j1 6= j2 6= · · · 6= jn, k1, ..., kn, j1, ...jn ∈ N. Moreover, we
have

φ(axk1
i1
xk2
i2
· · ·xkn

in
b) = φ(axk1

j1
xk2
j2
· · ·xkn

jn
b),

whenever i1 6= i2 6= · · · 6= in, j1 6= j2 6= · · · 6= jn, k1, ..., kn, j1, ...jn > M and a, b ∈ A[M ]

for some M ∈ N.

Lemma 6.7. For all a, b, y ∈ A0, we have

〈E(y)â, b̂〉 = 〈yÊ(a), Ê[b]〉.

Proof. Because an element in A0 is a finite linear combination of the noncommutative
monomials, it suffices to show the property in the case: b∗ = xr1

i1
· · ·xrl

il
, y = xs1

j1
· · ·xsm

jm
,

a = xt1
k1
· · ·xtn

kn
, where i1 6= i2 6= · · · 6= il, j1 6= ... 6= jm, k1 6= ... 6= kn and all the power

indices are positive integers. Let N = max{i1, ..., il, j1, ..., jm, k1, ..., kn}, for all L > N ,
we have il 6= j1 + L and jm + L 6= k1. Therefore, we have

〈E(y)â, b̂〉 = lim
M→∞

〈αM(y)â, b̂〉

= 〈αL(y)â, b̂〉
= φ(xr1

i1
· · ·xr1

il
xs1
j1+L · · ·x

sm
jm+Lx

t1
k1
· · ·xtn

kn
),

by corollary 6.6,

= φ(xr1
1 · · ·xrl

l x
s1
l+1 · · ·x

sm
l+mx

t1
l+m+1 · · ·x

tn
l+m+n)

= φ(xr1
1 · · ·xrl

l x
s1
l+1 · · ·x

sm
l+mx

t1
l+m+1 · · ·x

tn
l+m+n)

= φ(xr1
i1+L · · ·x

r1
il+Lx

s1
j1
· · ·xsm

jm
xt1
k1+2L · · ·x

tn
kn+2L)

= φ(αL(xr1
i1
· · ·xr1

il
)xs1

j1
· · ·xsm

jm
α2L(xt1

k1
· · ·xtn

kn
))

= lim
M→∞

φ(αN(b∗)yα2L+M(a))

= φ(αL(b∗)yE[a]).

Notice that {αL(b)|L ≤ N} is a bounded sequence of random variables which converges
to E[b∗] in WOT and φ(·yE[a]) is a normal linear functional on A, we have

φ(αL(b∗)yE[a]) = lim
M→∞

φ(αM(b∗)yE[a])

= φ(E[b]∗yE[a])

= 〈yÊ[a], Ê[b]〉.

�
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Lemma 6.8. Let {yn}n∈N ⊂ A0 be a bounded sequence of random variables such that
w∗ − lim yn = 0, then w∗ − limE[yn] = 0.

Proof. For all a, b ∈ A0, we have

lim
n
〈E[yn]â, Ê[b]〉 = lim

n
〈ynÊ[a], Ê[b]〉 = 0.

Since {â|a ∈ A0} is dense in Hξ, we get our desired conclusion. �

Let y ∈ A and {yn}n∈N ⊂ A0 be a bounded sequence such that yn converges to y in
WOT. For all a, b ∈ A0, we have

lim
n
〈E[yn]â, b̂〉 = lim

n
〈ynÊ[a], Ê[b]〉 = 〈yÊ[a], Ê[b]〉.

Therefore, {E[yn]}n∈N converges to an element y′ in pointwise weak topology, by the
lemma above, we see that y′ is independent of the choice of {yn}n∈N. Since {E[yn]}n∈N ⊂
T , we have y′ ∈ T . By now, we have defined a linear map E : A → T and we have

Lemma 6.9. E is normal.

Proof. Let {yn}n∈N ⊂ A be a bounded WOT convergent sequence of random variables
such that w∗ − lim

n→∞
yn = y. Then, we have

lim
n→∞

〈E[yn]â, b̂〉 = lim
n→∞

〈ynÊ[a], Ê[b]〉 = 〈yÊ[a], Ê[b]〉 = 〈E[y]â, b̂〉,

for all a, b ∈ A0. Therefore, E is normal. �

Now, we can turn to show that E is a conditional expectation from A to φ:

Lemma 6.10. E[a] = a for all a ∈ T .

Proof. Let a ∈ T , b, c ∈ A0, then there exists an N ∈ N such that a ∈ AN+1
w∗

and
b, c ∈ A[N ]. We can approximate a in WOT by a bounded sequence (ak)k∈N ⊂ AN+1 in
WOT. According to the definition of E and the exchangeability, we have

〈E[a]ĉ, b̂〉 = φ(b∗E[a]c)
= lim

k
φ(b∗E[ak]c)

= lim
k

lim
n

φ(b∗αn(ak)c)

= lim
k

φ(b∗akc)

= φ(b∗ac) = 〈aĉ, b̂〉.

The equation is true for all b, c ∈ A0, so E[a] = a. �

To check the bimodule property of E, we need to show that the quality of 6.7 holds
for all x ∈ A:

Lemma 6.11. For all a, b, x ∈ A, we have

φ(aE[x]b) = φ(E[a]xE[b]).
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Proof. By the Kaplansky’s density theorem, there exist two bounded sequences {an ∈
A0|‖an‖ ≤ ‖a‖, n ∈ N} and {bn ∈ A0|‖bn‖ ≤ ‖b‖, n ∈ N} which converge to a and b in
WOT, respectively. Since φ and E are normal, we have

φ(aE[x]b) = lim
n

φ(anE[x]b)

= lim
n

lim
m

φ(anE[x]bm)

= lim
n

lim
m

φ(E[an]xE[bm])

= lim
n

φ(E[an]xE[b])

= φ(E[a]xE[b]).

�

Lemma 6.12. E[ax] = aE[x] for all a ∈ T and x ∈ A.

Proof. For all b, c ∈ A0, by lemma 6.11 and Lemma 6.10, we have

〈E[ax]b̂, ĉ〉 = φ(c∗E[ax]b)
= φ(E[c∗]axE[b])
= φ((E[c∗]a)xE[b]).

since E[c∗]a ∈ T , E[E[c∗]a] = E[c∗]a, then

φ((E[c∗]a)xE[b]) = φ(E[E[c∗]a]xE[b])
= φ(E[c∗]aE[x]b)
= φ(E[c∗]E[aE[x]]b)
= φ(E[E[c∗]](aE[x])E[b])
= φ(E[c∗](aE[x])E[b])
= φ(c∗E[aE[x]]b)
= φ(c∗aE[x]b)

= 〈aE[x]b̂, ĉ〉.

Since b, c are arbitrary, we get our desired conclusion �

Lemma 6.13.

E[xk1
i1
· · ·xks

is
· · ·xkt

it
· · ·xkn

in
] = E[xk1

i1
· · ·αN(xks

is
· · ·xkt

it
) · · ·xkn

in
]

whenever i1 6= i2 6= · · · 6= in, N ≥ max{i1, ..., in}, kj’s are positive integers.

Proof. Given a, b ∈ A0, then there exists an M such that a, b ∈ A[M ]. Then, we have

〈E[xk1
i1
· · ·xks

is
· · ·xkt

it
· · ·xkn

in
]â, b̂〉

= lim
l→∞

〈αl(xk1
i1
· · ·xks

is
· · ·xkt

it
· · ·xkn

in
)â, b̂〉

= 〈αM(xk1
i1
· · ·xks

is
· · ·xkt

it
· · ·xkn

in
)â, b̂〉

= 〈xk1
i1+M · · ·xks

is+M · · ·xkt
it+M · · ·xkn

in+M â, b̂〉,
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by lemma 6.6 and i1 + M 6= · · · 6= is−1 + M 6= is + M + N 6= is+1 + M + N 6= · · · 6=
it + M + N 6= it+1 + M 6= · · · in + M ,

〈xk1
i1+M · · ·xks

is+M · · ·xkt
it+M · · ·xkn

in+M â, b̂〉

= 〈xk1
i1+M · · ·xks

is+M+N · · ·xkt
it+M+N · · ·xkn

in+M â, b̂〉

= 〈αM(xk1
i1
· · ·αN(xks

is
· · ·xkt

it
) · · ·xkn

in
)â, b̂〉

= lim
l→∞

〈αl(xk1
i1
· · ·αN(xks

is
· · ·xkt

it
) · · ·xkn

in
)â, b̂〉

= 〈E[xk1
i1
· · ·αN(xks

is
· · ·xkt

it
) · · ·xkn

in
]â, b̂〉.

Because {â|a ∈ A0} is dense in H, the proof is complete. �

Corollary 6.14.

E[xk1
i1
· · ·xks

is
· · ·xkt

it
· · ·xkn

in
] = E[xk1

i1
· · ·E[xks

is
· · ·xkt

it
] · · ·xkn

in
],

whenever i1 6= i2 6= · · · 6= in.

Proof. Let N = max{i1, ..., in}. Since E[xks
is
· · ·xkt

it
] = w∗ − lim

l→∞
αl(xks

is
· · ·xkt

it
), we have

E[xks
is
· · ·xkt

it
] = w∗ − lim

l→∞

1

l

l∑

s=1

αN+l(xks
is
· · ·xkt

it
).

Then, by lemma 6.13,

E[xk1
i1
· · ·xks

is
· · ·xkt

it
· · ·xkn

in
]

= 1
l

l∑
s=1

E[xk1
i1
· · ·αN+l(xks

is
· · ·xkt

it
) · · ·xkn

in
]

= E[xk1
i1
· · · [w∗ − lim

l→∞

1
l

l∑
s=1

αN+l(xks
is
· · ·xkt

it
)] · · ·xkn

in
]

= E[xk1
i1
· · ·E[xks

is
· · ·xkt

it
] · · ·xkn

in
].

The last two equations follow the normality of E and

xk1
i1
· · · [

1

l

l∑

s=1

αN+l(xks
is
· · ·xkt

it
)] · · ·xkn

in
→ xk1

i1
· · ·E[xks

is
· · ·xkt

it
] · · ·xkn

in

in WOT. �

Lemma 6.15.

E[b1x
k1
i1
b2 · · · bsx

ks
is
· · · btx

kt
it
· · · bnx

kn
in

] = E[b1x
k1
i1
b2 · · ·E[bsx

ks
is
· · · btx

kt
it

] · · · bnx
kn
in

],

whenever i1 6= i2 6= · · · 6= in, k1, ...kn are positive integers, b1, ...bn ∈ AN+1 where
N = max{i1, ..., in}.

Proof. By the linearity of E, we can assume that bi’s are “monomials”, i.e. bj =
xij,1 · · ·xij,rj

where ij,j′’s are greater than N . Then,

b1x
k1
i1
b2 · · · bsx

ks
is
· · · btx

kt
it
· · · bnx

kn
in

= b1x
k1
i1
b2 · · ·xis,1 · · ·xis,rs

xks
is
· · ·xit,1 · · ·xit,rt

xkt
it
· · · bnx

kn
in
,

is,1 ≥ N + 1 > is−1 and it,rt ≥ N + 1 > it+1. Therefore, by lemma 6.14,

E[b1x
k1
i1
b2 · · ·xis,1 · · ·xis,rs

xks
is
· · ·xit,1 · · ·xit,rt

xkt
it
· · · bnx

kn
in

]

= E[b1x
k1
i1
b2 · · ·E[xis,1 · · ·xis,rs

xks
is
· · ·xit,1 · · ·xit,rt

xkt
it

] · · · bnx
kn
in

]

= E[b1x
k1
i1
b2 · · ·E[bsx

ks
is
· · · btx

kt
it

] · · · bnx
kn
in

].
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�

Proposition 6.16. Let (A, φ) be a W ∗-probability space and (xi)i∈N be a sequence of
of selfadjoint random variables in A whose joint distribution is invariant of under the
boolean permutations. Let E be the conditional expectation onto the non-unital tail
algebra T of the sequence. Then, E has the following factorization property: for all
n, k ∈ N, polynomials p1, ..., pn ∈ T 〈X1, ..., Xk〉0 and i1, ..., in ∈ {1, ..., k}, we have

E[p1(xi1) · · · pl(xim) · · ·pn(xin)] = E[p1(xi1) · · ·E[pl(xim)] · · ·pn(xin)].

Proof. It suffices to prove the statement in the case: p1, ..., pn are T -monomials but
none of them is an element of T . Assume that

pi(X) = bi,0X
ti,1bi,1X

ti,2bi,2 · · ·X
ki
ti
,

where bi,j ∈ T and t′i,js are positive integers. Let N = max{i1, ..., in}, then bi,j ∈

T ⊂ AN+1
w∗

. By the Kaplansky theorem, for every bi,j, there exists a bounded se-
quence {bl,i,j}l∈N such that bl,i,j converges to bi,j in strong operator topology (SOT). Let

pn,i(X) = bn,i,0X
ti,1bn,i,1X

ti,2bn,i,2 · · ·X
ki
ti

, then pl,k(xik) converges to pk(xik) in SOT. By
the normality of E, we have

E[p1(xi1) · · ·pl(xim) · · ·pn(xin)] = w∗ − lim
l→∞

E[pl,1(xi1) · · ·pl,m(xim) · · ·pl,m(xin)].

By lemma 6.15, we have

E[pl,1(xi1) · · · pl,m(xim) · · ·pl,m(xin)] = E[pl,1(xi1) · · ·E[pl,m(xim)] · · · pl,m(xin)].

It follows that E[pl,m(xim)] converges to E[pm(xim)] in WOT. Therefore, pl,1(xi1) · · ·E[pl,m(xim)] · · · pl,m(xin)
converges to p1(xi1) · · ·E[pm(xim)] · · ·pm(xin) in WOT. Now, we have

E[p1(xi1) · · ·pl(xim) · · · pn(xin)]
= w∗ − lim

l→∞
E[pl,1(xi1) · · ·pl,m(xim) · · ·pl,m(xin)]

= w∗ − lim
l→∞

E[pl,1(xi1) · · ·E[pl,m(xim)] · · · pl,m(xin)]

= E[p1(xi1) · · ·E[pm(xim)] · · · pm(xin)],

the last equality follows E’s WOT continuity. �

7. Main theorem and examples

7.1. non-unital tail algebra case. Now, we can state and prove our main theorem
for the non-unital tail algebra case:

Theorem 7.1. Let (A, φ) be a W ∗-probability space and (xi)i∈N be an infinite sequence
of selfadjoint random variables. Suppose A is the WOT closure of the non-unital alge-
bra generated by (xi)i∈N and φ is non-degenerated. Then the following statements are
equivalent:

a) The joint distribution of (xi)i∈N satisfies the invariance conditions associated
with the linear coactions of the quantum semigroups Bs(n)’s.

b) The sequence (xi)i∈N is identically distributed and boolean independent with re-
spect to a φ−preserving normal conditional expectation E onto the non-unital
tail algebra T of the sequence (xi)i∈N
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Proof. a) ⇒ b): By choosing m = 1 in proposition 6.16, we have

E[p1(xi1) · · ·p2(xi2) · · ·pn(xin)]
= E[E[p1(xi1)]p2(xi2) · · ·pn(xin)]
= E[p1(xi1)]E[p2(xi2) · · ·pn(xin)]

· · ·
= E[p1(xi1)]E[p2(xi2)] · · ·E[pn(xin)],

whenever i1 6= i2 6= · · · 6= in, p1, ..., pn ∈ T 〈X〉0
b) ⇒ a) is a special case of theorem 5.3 �

7.2. Unital tail algebra case. Let (A, φ) be a W ∗ probability space with a non-
degenerated normal state φ and (xi)i∈N be a sequence of selfadjoint random variables.
Suppose A is the WOT closure of the unital algebra generated (xi)i∈N and φ is non-
degenerated. Again, we denote by A0 the non-unital algebra generated by (xi)i∈N. Let

IA be the unit of A, we have considered the case that 1A is contained in A0
w∗

. If IA is

not contained in A0
w∗

, denote by I1 the unit of A0
w∗

. Then

I2 = IA − I1 6= 0

and
A = CI2 ⊕A0

w∗

.

For all x ∈ A0
w∗

, we have
I2x = (IA − I1)x = 0.

Let a ∈ A0
w∗

such that φ(xay) = 0 for all x, y ∈ A0
w∗

. For x̄, ȳ ∈ A, there exist two

constants c1, c2 ∈ C and x, y ∈ A0
w∗

such that x = c1I2 + x and y = c2I2 + y, then

φ(x̄aȳ) = φ(xab) = 0,

Since our x̄, ȳ are chosen arbitrarily, we have a = 0. Therefore, (A0
w∗

, 1
φ(I1)

φ) is a

W ∗− probability space with a non-degenerated normal state. Let Atail be the unital
tail algebra of (xi)i∈N in (A, φ) and T be the non-unital tail algebra of (xi)i∈N in

(A0
w∗

, 1
φ(I1)

φ). Then, we have

Atail =
∞⋂

n=1

vN{xk|k ≥ n} =
∞⋂

n=1

(W ∗{xk|k ≥ n} + CIA) = T + CIA.

Since A0
w∗

is a two-sided ideal of A. For x̄ ∈ Atail, x̄ = aIA + x for some x ∈ T
and a ∈ C. By theorem 7.2, there is a φ preserving normal conditional expectation

E from A0
w∗

onto T . As we proceeded in section 7, we can extend this conditional

expectation E to an conditional expectation Ē which is from the unitalization of A0
w∗

to the unitalization of T . The unitalizations of the two algebras are isomorphic to A
and Atail, respectively. We have

Lemma 7.2. The conditional expectation Ē is φ-preserving and normal.

Proof. The normality is obvious, we just check the φ-preserving condition here. Let

x̄ = aIA + x ∈ A for some x ∈ A0
w∗

and a ∈ C, we have

φ(E[x̄] = φ(E[aIA + x]) = φ(aIA + E[x]) = a + φ(E[x]) = a + φ(x).
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The last equality follows the fact that E is a φ(I1)φ-preserving conditional expectation

in (A0
w∗

, 1
φ(I1)

φ). �

Together with proposition 5.3 We have the following theorem for our unital case:

Theorem 7.3. Let (A, φ) be a W ∗-probability space and (xi)i∈N be a sequence of self-
adjoint random variables. Suppose the unit IA of A is not contained in the WOT
closure of the non-unital algebra generated by (xi)i∈N and φ is non-degenerated. Then
the following statements are equivalent:

a) The joint distribution of (xi)i∈N satisfies the invariance condition associated with
the linear coactions of the quantum semigroups Bs(n)’s.

b) The sequence (xi)i∈N is identically distributed and boolean independent with re-
spect to a φ−preserving normal conditional expectation E onto the unital tail
algebra Atail of the (xi)i∈N.

7.3. Examples. To illustrate theorem 7.1 and theorem 7.3, we provide two examples
here. For the details of the examples, see [4] and [8].
Non-unital case Let H be a Hilbert space with orthonormal basis {ei}i∈N∪{0}, we
define a sequence of operators {xn}n∈N as follows:

xne0 = en, and xnei = δn,ie0 for i ∈ N.

Let A be the von Neumann algebra generated by {xn}n∈N, then e0 is cyclic for A. Since
A is WOT closed and contains all finite-rank operators, A is actually B(H). Let φ be
the vector state φ(·) = 〈·e0, e0〉, then we can easily check that the random variables xi’s
are identically distributed and boolean independent. The tail algebra is CPe0 which
does not contain the unit of B(H). The conditional expectation E is given by the
following formula:

E[x] = Pe0xPe0,

for all x ∈ A.
Unital case Let H1 = H ⊕ Ce−1 be the direct sum of the Hilbert space H with
orthonormal basis {ei}i∈N∪{0} and CPe−1. As we constructed in the previous example,
we define a sequence of operators {xn}n∈N as follows:

xne0 = en, and xnei = δn,ie0 for i ∈ N.

Let A be the von Neumann algebra generated by {xn}n∈N, then A = B(H) ⊕ CPe−1.
Therefore, the WOT-closure of the non-unital algebra generated by {xn}n∈N is B(H)⊕0
but not the entire algebra A. Let φ be the vector state φ(·) = 1

2
〈·(e0 + e−1), e0 + e−1〉,

then the random variables xi’s are identically distributed and boolean independent. The
unital tail algebra is CIH ⊕ CPe0 which contains the unit of B(H1). The conditional
expectation E is given by the following formula:

E[x] = Pe0xPe0 + 〈xe−1, e−1〉(IH1 − Pe−1),

for all a ∈ A.

7.4. On W ∗-probability spaces with faithful states. If we restrict the invariance
condition for boolean independence to a W ∗-probability space with a faithful state,
then we will have the following:
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Theorem 7.4. Let (A, φ) be a W ∗-probability space and (xi)i∈N be a sequence of self-
adjoint random variables such that A is generated by (xi)i∈N and φ is faithful. Then
the following statements are equivalent:

a) The joint distribution of (xi)i∈N satisfies the invariance condition associated with
the linear coactions of the quantum semigroups Bs(n)’s.

b) xi = xj for all i, j ∈ N

Proof. b) ⇒ a): If xi = xj for all i, j ∈ N, given a monomial p = Xi1 · · ·Xik ∈
C〈X1, ..., Xn〉, then

µx1,...xn
(Xi1 · · ·Xik)P = φ(xi1 · · ·xik)P

= φ(xk
1)P

=
n∑

j1,...,jk=1

φ(xk
1)π(Puj1,i1 · · ·ujk,ikP)

=
n∑

j1,...,jk=1

φ(xj1 · · ·xjk)Puj1,i1 · · · jk, ikP

= µx1,...xn
⊗ idBs(n)( Lp).

b) ⇒ a): It is sufficient to show that x1 = x2. By theorem 7.1 and 7.3, there exists a
φ−preserving conditional expectation E maps A to its unital or non-unital tail algebra
such that (xi)i∈N is identically boolean independent with respect to E. For k ∈ N and
k > 2, we have

φ((x1 − x2)xk((x1 − x2)xk)∗)
= φ((x1 − x2)x

2
k(x1 − x2))

= φ(E[(x1 − x2)x
2
k(x1 − x2)])

= φ(E[x1 − x2]E[x2
k]E[x1 − x2])

= 0.

Since φ is faithful, we get

(x1 − x2)xk = 0

for all k > 2. Let An be the WOT closure of the non-unital algebra generated by
{xk|k > n}, then we have

(x1 − x2)x = 0

for all x ∈ Ak . Notice that (xi)i∈N is exchangeable, by the construction of proposition
4.2 in [15] , there exists a normal φ-preserving homomorphism α : An → An+1 such
that α(xi) = xi+1. Denote by In the unit of An, then α(In) = In+1 and InIn+1 = In+1,
since In+1 is a projection in An. Then, we have

φ((In − In+1)
2) = φ(In − In+1) = φ(In) − φ(α(In)) = 0,

which implies that In = In+1. It follows that

I0 = I1 = I2.

Therefore,

0 = (x1 − x2)I2 = (x1 − x2)I0 = x1 − x2.

�
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8. Two more kinds of distributional symmetries

Since C〈X1, ..., Xn〉 is an algebra which is freely generated by n indeterminants
X1, ..., Xn. It would be natural to define coactions of the quantum semigroups Bs(n) on
C〈X1, ..., Xn〉 as an algebraic homomorphism but not only a linear map. In this section,
we will study the probabilistic symmetries associated with some algebraic coactions of
the quantum semigroups Bs(n)’s and Bs(n)’s on C〈X1, ..., Xn〉. We we will define the
invariance condition for the joint distribution of a sequence of noncommutative random
variables in a similar form as we did in previous sections.

Now, let us consider C〈X1, ..., Xn〉 as an algebra and define a coaction of the quantum
semigroups Bs(n) to be a homomorphism

 L′
n : C〈X1, ..., Xn〉 → C〈X1, ..., Xn〉 ⊗ Bs(n)

by the following formulas:

 L′
n(1) = 1 ⊗ I,  L′

n(Xi) =
n∑

k=1

Xk ⊗Puk,iP.

Then, we would have

Ln(Xi1 · · ·Xik) =
n∑

j1,...jk=1

Xj1 · · ·Xjk ⊗Puj1,i1P · · ·Pujn,inP

and
( L′

n ⊗ idBs(n)) L′
n = (idCn

⊗ ∆) L′
n.

We will call  L′
n the algebraic coaction of Bs(n) on C〈X1, ..., Xn〉. The invariance condi-

tion is so strong that we can get our conclusion in some finitely generated probability
spaces.

Proposition 8.1. Let (A, φ) be a W ∗-probability space with a non-degenerated state φ,
Fixed n ∈ N, let (xi)i=1,...,n be a sequence of selfadjoint noncommutative random vari-
ables in A. We say the joint distribution of (xi)i=1,...,n is invariant under the algebraic
coaction  L′

n of Bs(n) if

µx1,...,xn
(p)P = µx1,...,xn

⊗ idBs(n)( L′
n(p)),

for all p ∈ C〈X1, ..., Xn〉, where µx1,...,xn
is the joint distribution of (xi)i=1,...,n. If is the

WOT closure of the unital algebra generated by (xi)i=1,...,n, then the joint distribution
of (xi)i=1,...,n is invariant under the algebraic coaction  L′

n of Bs(n) is equivalent to x1 =
x2 = · · · = xn.

Proof. Suppose x1 = x2 = · · · = xn. Let p = Xi1 · · ·Xim ∈ C〈X1, ..., Xn〉, then we have

µx1,...,xn
⊗ idBs(n)( L′

n(Xi1 · · ·Xim))

= µx1,...,xn
⊗ idBs(n)(

n∑
j1,...jm=1

Xj1 · · ·Xjm ⊗Puj1,i1Puj2,i2P · · ·Pujm,imP)

=
n∑

j1,...jm=1

φ(xj1 · · ·xjm)Puj1,i1Puj2,i2P · · ·Pujm,imP

=
n∑

j1,...jm=1

φ(xm
1 )Puj1,i1Puj2,i2P · · ·Pujm,imP

= φ(xm
1 )P

= µx1,...,xn
(Xi1 · · ·Xim)P.
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Since p is arbitrary, we proved ⇐.
Suppose the joint distribution of (xi)i=1,...,n is invariant under the algebraic coaction  L′

n.
Let {v1, ..., v2n} be orthonormal basis of the standard 2n−dimensional Hilbert space C2n

and denote vk = vk+2n for all k ∈ Z. Let

Pi,j = Pv2(i−j)+1+v2(j−i)+2

and

P = Pv1+v2+···+v2n ,

where Pv is the orthogonal projection onto the one dimensional subspace generated by
the vector v . By lemma 3.3, we have a representation π of Bs(n) on C2n defined by
the following formulas:

π(P) = P, π(Pui1,j1 · · ·uik,jkP) = PPi1,j1 · · ·Pik,jkP

for all i1, j1, ..., ik, jk ∈ {1, ..., n} and k ∈ N. In particular, we have

π(Pui,jP) = PPi,jP =
1

n
P.

Let π act on the invariance condition, we get

φ(xi1 · · ·xk)P = π(µx1,...xn
(Xi1 · · ·Xik)P)

= π(
n∑

j1,...,jk=1

µx1,...xn
⊗ idBs(n)(Xj1 · · ·Xjk ⊗Puj1,i1P · · ·Pujk,ikP))

=
n∑

j1,...,jk=1

φ(xj1 · · ·xjk)π(Puj1,i1P · · ·Pujk,ikP))

=
n∑

j1,...,jk=1

φ(xj1 · · ·xjk) 1
nkP,

for all i1, ik ∈ {1, ...n}. It implies that

φ(xi1 · · ·xk) =
1

nk

n∑

j1,...,jk=1

φ(xj1 · · ·xjk).

Therefore, two mixed moments are the same if their degree are the same. Given two
monomials a = xs1 · · ·xsk1

and b = xs1 · · ·xsk2
then

φ(a(xi−xj)(xi−xj)
∗b) = φ(a(xi−xj)

2b) = φ(axixib)−φ(axixjb)−φ(axixjb)+φ(axixib) = 0,

the last equation is true because all the monomials have the same degree. By some
linear combinations, we have

φ(a(xi − xj)(xi − xj)
∗b) = 0,

for all a, b ∈ A[n], where A[n] is the unital algebra generated by x1, ...xn, thus

xi = xj ,

for all i 6= j. �

In the end of this section, we study a coaction of the quantum semigroups Bs(n)
on the joint distribution of a sequence of noncommutative random variables. We can
define a coaction

Ln : C〈X1, ..., Xn〉 → C〈X1, ..., Xn〉 ⊗ Bs(n)
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of Bs(n) on the algebra of noncommutative polynomials C〈X1, ..., Xn〉 by the following
formulas:

Ln(1) = 1 ⊗ I, Ln(Xi) =

n∑

k=1

Xk ⊗ uk,i,

where 1 is the identity of C〈X1, ..., Xn〉 and I is the identity of Bs(n). According to the
definition of Ln, we have

Ln(Xi1 · · ·Xik) =

n∑

j1,...jk=1

Xj1 · · ·Xjk ⊗ uj1,i1 · · ·ujn,in.

One can easily check

(Ln ⊗ idBs(n))Ln = (idCn
⊗ ∆)Ln,

where idBs(n) and idCn
are identity map of Bs(n) and C〈X1, ..., Xn〉.

Then, we have

Proposition 8.2. Let (A, φ) be a probability space and (xi)i∈N. The joint distribution
is invariant under the coactions Ln’s of the quantum semigroups Bs(n) if for all n,
p ∈ C〈X1, ..., Xn〉. Let µx1,...,xn

be the joint distribution of x1, ..., xn, I be the unit of
Bs(n) and Ln is the coaction on C〈X1, ..., Xn〉, we have

µx1,...,xn
(p)I = µx1,...,xn

⊗ id(Ln(p)).

If the joint distribution of (xi)i∈N is invariant under the coactions Ln’s of the quantum
semigroups Bs(n)’s, then φ(xi1xi2 · · ·xik) = 0 for all i1, ..., ik ∈ N and k ∈ N.

Proof. Let k be a positive integer, i1, ..., ik ∈ N and N = max{i1, ..., ik}. Take a
trivial representation π of Bs(N) on a 1−dimensional space V defined by the following
formulas:

π(I) = 1, and π(ui,j) = π(P) = 0,

where 1 is the identity of V . By the universality of Bs(n), π is well defined. According
to the invariance condition, we have

π(µx1,...,xN
(p)I) = µx1,...,xN

⊗ π(Ln(p)),

for all p ∈ C〈X1, ..., Xn〉. Let p = Xi1 · · ·Xik , we get

φ(xi1xi2 · · ·xik)1 =

n∑

j1,...jk=1

φ(xj1 · · ·xjk)π(uj1,i1 · · ·ujn,in) = 0,

which completes the proof. �
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