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We point out that the quantum de Finetti representation, unique for infinitely extendable ex-
changeable systems, assigns a non-zero Quantum Discord to (quantumly) uncorrelated systems and
thus cannot serve as an universal prior distribution in the Bayesian Quantum Tomography. This
apparent paradox stems from linearity of the Born rule for the probability assignment in Quantum
Mechanics, which results in mixing of one’s knowledge about the quantum state and the represen-
tative of the state in one density matrix.
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Quantum Mechanics is formulated with the concept of
quantum state, a density matrix ρ(t) in general, which
gives the probabilities of outcomes of all possible mea-
surements on the system. The probabilities are de-
fined by the Positive Operator Valued Measure (POVM):
Πα ≥ 0, α = 1, . . . ,K,

∑

α Πα = I with the prob-
ability assignment being linear in the density matrix:
pα = Tr(Παρ), which is the well-known result of Glea-
son’s theorem [1] (see also Ref. [2]). By measuring the
quorum of observables one can obtain the set of data suffi-
cient for complete characterization of the density matrix.
Feasibility of such a procedure was brilliantly demon-
strated in the beginning of 1990-es [3–6] (actually, the
firstly suggested quantum homodyne tomography scheme
was proved to be such a powerful and efficient tool, that
the whole field of quantum states/processes reconstruc-
tion was aptly nicknamed as “Quantum Tomography”
(QT) [7]).

Due to irreversible character and statistical nature of
the quantum measurements, to perform the QT the ex-
perimentalist needs an ensemble of systems in identically
prepared states. Then, a statistical estimation procedure
can be devised allowing one to estimate the density ma-
trix parameters (e. g. by using the Maximal Likelihood
Estimation [8, 9] or by resorting to the full Bayesian Sta-
tistical Inference [10–14]). If the number N of systems in
the ensemble is sufficiently large, the result of estimation
is expected to converge to the actual density matrix.

The quantum no-cloning theorem rules out duplicating
of an unknown quantum state [15], thus the QT is always
a process of updating of information about the state (if
necessary, updating also the parameters of the measure-
ment device at the same time [16]). Such an updating
is the main idea behind the Bayesian Statistical Infer-
ence method. The convergence property of the likelihood
function for a generic measurement on the ensemble (i.e.
the multinomial distribution) to the Dirac delta-function
in the limit of infinite number of measurements [17] (see
also Ref. [11]) results in agreement between different
Bayesian experimentalists. The Bayesian approach in the

QT was pioneered by K. R. W. Jones [10], who obtained
an upper bound on the accessible information obtainable
from measurement of a pure quantum state, when the
latter is represented by an invariant prior measure, and
indicated a measurement scheme (the so-called isotropic
scheme) which saturates this bound asymptotically. The
Bayesian approach to the QT for the system consisting
of 1/2-spins was extensively studied in Ref. [11], where
pure as well as mixed quantum states of such spin sys-
tems were considered.
We note that measurements in the QT are not re-

stricted to separate measurements on individual systems
of the ensemble. For a finite N it is more efficient to
measure the entire ensemble as a combined system, see
Refs. [18–20]. As single members of the ensemble are
concerned, it is shown that asymptotically to the order of
1/N the effectiveness of the individual measurements ap-
proaches that of the combined scheme [21]. However, the
combined measurement on several systems of the ensem-
ble allows one to uncover also the correlations between
the individual ensemble members.
The central question in the Bayesian QT is the way to

represent one’s incomplete knowledge about an ensemble.
Using two premises about the ensemble, namely that of
mutual exchangeability of the individual systems and in-
finite extendability of the ensemble, a unique answer to
this question is the quantum de Finetti representation,
which follows from the classical de Finetti theorem and
Gleason’s theorem [12, 22]. It also gives the quantum
Bayesian rule for updating the probability distribution
[13]. The quantum de Finetti representation has the fol-
lowing form

ρ(N) =

∫

dµ(ρ)ρ⊗N , ρ⊗N ≡ ρ⊗ ρ⊗ . . .⊗ ρ
︸ ︷︷ ︸

N

, (1)

where dµ(ρ) = dρP (ρ) and P (ρ) is the probability den-
sity. The Bayesian QT then proceeds as follows. The
experimentalist’s prior knowledge about the state is re-
flected in the prior probability density P (ρ). The Bayes
rule for updating the probability density after measure-

http://arxiv.org/abs/1303.4993v2


2

ments on the first M systems with the data Π1, . . . ,ΠM

(i.e. the POVM measurement results for one or several
POVMs) reads

P (ρ|Π1, . . . ,ΠM ) =
P (Π1, . . . ,ΠM |ρ)P (ρ)

P (Π1, . . . ,ΠM )
, (2)

where

P (Π1, . . . ,ΠM ) =

∫

dρP (Π1, . . . ,ΠM |ρ)P (ρ). (3)

Then, the quantum state for the remaining systems of
the ensemble becomes [13]

ρ(N−M) =

∫

dρP (ρ|Π1, . . . ,ΠM )ρ⊗N−M . (4)

Notice that using the quantum de Finetti representation,
(1) or (4), one makes predictions also for the correla-
tions between the individual systems of the ensemble.
As noted in Ref. [12], the exchangeable representation
(1) cannot be carried to the probability theory formu-
lated in the linear space either over the field of real or
quaternionic numbers, thus being a unique feature of the
complex Hilbert space. It was also argued that an ex-
changeable de Finetti state is a natural substitute for
the “unknown quantum state” in the QT [12] and that
the latter has to be banished from it.
However, as we show below, the way the quantum de

Finetti representation accounts for correlations of the in-
dividual systems of the ensemble bears a considerable
problem. The problem lies in the fact that an exchange-
able prior for a quantum state ofN exchangeable systems
almost surely assigns correlations to them, which mani-
fest themselves in nonzero Quantum Discord (QD) [23].
The QD accounts for non-classical correlations between
the individual systems of a composite system and can
be experimentally measured (see for instance, Ref. [24]).
But as we discuss below, if it is known that there are no
such correlations [25] and the information on the mea-
sured state is limited (e.g. to basic symmetries) one can-
not combine these two features in a quantum de Finetti
prior. This problem is even worse: the posterior, as given
by the exchangeable de Finetti representation Eq. (4),
will also have a nonzero QD almost surely (see below).
Let us recall the QD definition [23]. The QD quan-

tifies non-classical correlations of two systems A and B
of a composite system in the Hilbert space HA ⊗ HB.
Given a density matrix ρ of a composite state, the QD is
the difference between two versions of the mutual infor-
mation, DA(ρ) = I(ρ) −QA(ρ). One is I(ρ) = H(ρA) +
H(ρB) − H(ρ), where H is the von Neumann entropy
H(ρ) = −Tr(ρ ln ρ) and ρA,B = TrA,B(ρ) are the reduced
density matrices. The other one is defined by optimizing
over all possible measurements in A and is given as fol-
lows QA(ρ) = H(ρB)−min

∑

k pkH(ρB|k), where ρB|k =
TrA(Ek ⊗ 11Bρ)/Tr(Ek ⊗ 11Bρ) is the state of B condi-
tioned on outcome k in A, and {Ek} is the set of POVM

elements. These two formulations of the mutual infor-
mation are two quantum generalizations of the classical
mutual information I(A : B) = (HA)+H(B)−H(A,B).
On the other hand, the state is of zero QD if and only if
there exist a von Neumann POVM Πk = |ψk〉〈ψk| that

∑

k

(Πk ⊗ 11B)ρ(Πk ⊗ 11B) = ρ, (5)

i.e. the ρ is a state obtainable by a von Neumann mea-
surement, where only classical correlations remain. The
QD is currently thought of as a resource for various clas-
sically intractable tasks including the quantum computa-
tion [26–28]. For instance, the remote state preparation
(a variant of the quantum teleportation protocol) based
on the QD only, i.e. without the quantum entanglement,
was already implemented experimentally [29].
Let us now inspect the QD of the exchangeable state

(1). To this goal we invoke a sufficient condition [30] for
non-zero QD of a bi-partite quantum system, which is
the rank of their correlation matrix Rn,m. In our case
the said composite consists of two exchangeable systems,
i.e. ρ(2) =

∑

n,m

Rn,mAn ⊗ Bm, where An and Bm are

bases in the space of Hermitian matrices acting in HA,B.
Then rank(R) > dA = dB implies D(ρ) > 0 (note that
for an exchangeable state the QD is symmetric with re-
spect to swapping of systems A and B). Consider the
two-dimensional systems, where the calculations are sim-
plified with the help of the Bloch vector representation.
In this case, the unique measure of Eq. (1) can be cast
as dµ(ρ) = dµ(~n) = 3

4πdn1dn2dn3P (~n), where the Bloch
vector satisfies ~n2 ≤ 1. In this case ρ(~n) = 1

2 (11 + ~n~σ),
where ~σ = {σ1, σ2, σ3} is the vector of Pauli matrices.
Then, by Eq. (1), the density matrix ρ(1) of system A or
B is

ρ(1) =

∫

dµ(~n)
1

2
(11 + ~n~σ) =

1

2
(11 + ~x~σ), (6)

where we have denoted ~x =
∫
dµ(~n)~n. Whereas the com-

posite density matrix reads

ρ(2) =
1

4



11⊗ 11 + ~x~σ ⊗ 11 + 11⊗ ~x~σ +
∑

i,j

τi,jσi ⊗ σj





(7)
with the matrix τ defined as τ =

∫
dµ(~n)~n ⊗ ~n (in the

tensor product notation). Now it is a simple observation
that the correlation matrix R of ρ(2) given by Eq. (7)
in the basis (11, σ1, σ2, σ3) has the following block-matrix
form

R =
1

4

(
1 ~xT

~x τ

)

, (8)

hence if rank(τ) = 3 > dim(HA) = 2 then D(ρ(2)) > 0.
But τ is full rank for any distribution P (~n) provided that
it has three-dimensional domain of support in the Bloch



3

ball. The simplest example of this class is the point-
mass distribution with P (~n) =

∑

α pαδ(~n − ~eα), where
all pα > 0 and ~e1, ~e2, and ~e3 being any three linearly
independent Bloch vectors.
Next we evaluate the geometric measure of the QD

proposed for the two-qubit system in Ref. [30], which
gives the distance to the zero QD states in the Bloch
vector space. It reads

D(ρ(2)) =
1

4

(
||~x||2 + ||τ ||2 − λmax

)
, (9)

where ||τ ||2 = Tr(τT τ) (in our case τT = τ) and λmax

is the maximal eigenvalue of the matrix Λ = ~x~xT + ττT .
Simple calculations give

D(ρ(2)) =
1

4
min
~m2

1
=1

(
∫

dµ(~n1)

∫

dµ(~n2)(1 + ~n1~n2)

×~n1

[
∑

j=2,3

~mj ⊗ ~mj

]

~n2

)

, (10)

where the vectors ~mj , j = 1, 2, 3, form an orthonormal
basis in the Bloch space. Eq. (10) shows that almost
surely D(ρ(2)) > 0, since the matrix in the square brack-
ets in Eq. (10) is manifestly positive for almost all choices
of the measure dµ(~n), while the scalar factor preceding it
is also positive. The only exception is the case of a mea-
sure dµ(~n) which has support on the one-dimensional
vector space (parallel to some vector ~m1) i.e. when P (~n)
is a distribution confined to a line in the Bloch sphere.
For the same reason, the nonzero QD will almost surely
prevail for any finite number of measurements. This is,
in fact, a quite general feature of the QD, since it was
shown [31] that the states of zero QD belong to a zero
measure subset of all states. Thus, one is led to accept a
nonzero QD for the result of the Bayesian reconstruction
for any finite number of measurements, if the de Finetti
exchangeable density matrix is admitted as a prior. The
Bayesian experimentalist making measurements on one
system at a time will not be confused by this, but if a
more advanced set-up is to be used with joint measure-
ments on two or more systems at a time, to measure their
correlations, the problem is bound to arise due to the
way the exchangeable representation assigns such corre-
lations.
The strength of the Bayesian approach lies in selecting

a judicious prior, reflecting all the information avail-
able at hand. This is a recurrent theme of the Bayesian
Statistical Inference in general [32, 33]. For instance, if
one knows somehow that there are no quantum corre-
lations between the individual systems of the ensemble
(e.g. they are created one at a time), one would like to
reflect this in the prior information. But since one does
not know the exact state of the systems in the ensemble,
e.g. only some symmetry considerations are known for
the density matrix parameters, one is forced to select a

straight line in the Bloch ball for the prior distribution
to have zero QD. But which one should be selected? In
the current situation the experimentalist has really no
clues for choosing it. A limited prior information on the
actual state of the system (a typical case of the QT) and
zero QD taken jointly do not allow one select a measure
in representation Eq. (1) for the state of the ensemble
which incorporates all the available information. Thus,
the exchangeable representation (1) is not an universal
prior that fits all (even the most typical) cases.

It is to be noted that the described problem has rather
deep roots in the linearity of the Quantum Mechanics it-
self. The field of Quantum Statistical Inference viewed
as a variant of the general Parametric Statistical Infer-
ence introduces one special feature: the linearity of the
probability assignment on the estimated parameter, i.e.
the density matrix ρ describing the quantum state. This
unique feature forces one to mix one’s incomplete knowl-
edge on the parameter to be estimated and the parameter
itself. This is seen already on the single system level.
A prior with the density P (ρ) for the estimated den-
sity matrix ρ invariably leads to a new density matrix
ρest =

∫
dρP (ρ)ρ by the total probability assignment

p(Πα) =

∫

dρP (ρ)p(Πα|ρ) =

∫

dρP (ρ)Tr(Παρ)

= Tr(Παρest), (11)

where the passage from the first line to the second is pro-
vided by linearity of Born’s rule (and convexity of the set
of density matrices) with the acceptance of the result ρest
as the “quantum state” by Gleason’s theorem (we note
in passing that usage of Gleason’s result is an impor-
tant implicit step in the simple and elegant proof of the
quantum de Finetti representation in Ref. [12]). From
this point of view, the experimentalist in the process of
the QT extracts the actual quantum state from such a
mixture. Indeed, the Bayesian updating in the QT is
not an unlimited process, but has as a limit the maximal
possible information obtainable from the ensemble (for
instance, the Jones limit [10] for the pure state QT with
the unitarily invariant prior). After the maximal possible
information is extracted (to the inevitable imperfections
of experimental apparatus and restriction to finite num-
ber of measurements) no further update is possible and
the experimentalists concludes what is the actual state
of the ensemble.

In conclusion, we have shown that the exchangeable,
i.e. the quantum de Finetti, representation almost surely
assigns a nonzero Quantum Discord to ensemble of ex-
changeable systems. If preparation of uncorrelated sys-
tems is assumed, the simultaneous requirements of zero
Quantum Discord and exchangeability of the prepared
ensemble of quantum states do not allow selection of any
prior at all within the quantum de Finetti representation.
Furthermore, we point out that it is the linearity of the
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Born rule for the probability assignments in Quantum
Mechanics that leads to such contradictory requirements
since, by Gleason’s theorem, one mixes one’s knowledge
about the state and the representative of the state in one
density matrix.

This work was supported by by Belarusian agency BR-
RFI (D.M.), and also by the FAPESP and CNPq grant
agencies of Brazil.
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Lett. 96, 230401 (2006); D. Mogilevtsev, J. Řeháček and
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SUPPLEMENTING MATERIAL: REVIEW

REPORTS AND REPLIES

In this section we reprint the Referee reports which,
in our opinion, add to the points considered in the
manuscript.

J. Phys. A: Math. Theor.

Board Member Report

This paper makes the (correct) observation that states
of de Finetti form generally have nonvanishing quantum
discord. I believe this is a novel and interesting observa-
tion. It is not a deep result, however. Given the tools
provided by previous authors, the proof consists simply
of checking the definition, in a few lines of simple algebra.
Although the authors refer centrally to the quantum

de Finetti theorem, their result has nothing to do with
this theorem. States of de Finetti form (their equation
1) occur naturally in the analysis of quantum state to-
mography.
I believe the authors are mistaken in their evaluation

of the relevance of their result. They conclude that the
latter implies that states of de Finetti form should not
generally be used as priors in quantum tomography. That
conclusion is simply not warranted and not implied by
their argument.
For these reasons I cannot recommend publication of

this manuscript.

Referee Report

The main result is that under the assumption than
one has an uncorrelated quantum system, considering
infinitely extendable exchangeable systems, the result of
using the quantum Finetti representation for a Bayesian
Quantum Tomography will be a correlated quantum
state.
This is an interesting and clearly written paper. The

problem is clearly introduced, the relevant references are
present in the bibliography, its length is appropriate and
the results seem correct. My main concern is with one
of the main assumptions made by the authors, that the
state is initially uncorrelated. From my point of view this
is a big assumption.
It is completely fine to assume what would happen if

one had, in theory, an uncorrelated initial state. But in
this paper the authors seem concerned with what should
do an experimentalist in this case to reconstruct the
state of the system without introducing additional corre-
lations. I think that it is really difficult to assume that
in a real experiment one is working with a completely
uncorrelated system. Any small perturbation, which is

inevitable when performing a measurement, would per-
turb the systems in such a way that it becomes corre-
lated. Even if one assumes that the different parts of the
systems are prepared independently in distant laborato-
ries, the measurement process which is essential for the
tomography process would perturb the system. This is
clearly explained in Ref. [31].

The authors closely follow Ref. [12] when dis-
cussing the role of the quantum Finetti representation
in Bayesian Quantum Tomography. According to that
paper, just after Eq. (1.5): ”quantum-state tomography
is not about uncovering some ”unknown state of nature”,
but rather about the various observers’ coming to agree-
ment over future probabilistic predictions”. If one agrees
with this statement, and also accepts the result from Ref.
[31] about how difficult is it to actually have an uncor-
related state, shouldn’t we expect that the result of a
Bayesian quantum tomography process is actually a cor-
related quantum state? That would be the only way to
predict the effects of the correlations that one would in-
troduce in the system while manipulating it.

In summary, I think that this is an interesting paper
and that it deserves being published in some form, but
I would advise the authors to support it’s main assump-
tions (an initial uncorrelated system and the need to ob-
tain an uncorrelated state) with stronger arguments. I
also think that, unless the authors can proof that the
correlations obtained through this quantum Bayesian to-
mography are large, the results obtained in this work are
what one could expect from the results in Ref. [31]. For
this reason it is my opinion that this work is not novel
enough to be published as a fast track communication.
I would be inclined to recommend it to be published as
a regular article if the authors could provide additional
explanations for the points raised before.

Phys. Rev. A

There were three rounds of review.

Round 1

The manuscript ”The quantum de Finetti represen-
tation for the Bayesian Quantum Tomography and the
Quantum Discord” is a short note on how badly the three
topics mentioned in the title play together. The idea, as
I understood it, is the following: The de Finetti represen-
tation is a symmetrization over different realizations of
a quantum state. In a Bayesian scenario, one eventually
assigns a probability distribution over the symmetrized
quantum state. This state will naturally belong to the
class of symmetric separable states. However the sym-
metric states with zero quantum discord are only a set
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of measure zero among them. This seems to bother the
authors.

I cannot follow the arguments of the authors. The
most obvious reason is that if the problem occurs for
classical states, then it will in particular appear for prod-
uct states. Second, there is no conflict at all: The sym-
metrized Bayesian estimate is not used to make predic-
tion about the correlations between the individual copies
(this does already not work in the classical de Finetti
scenario), but rather about single instances. Finally, in
a Bayesian scenario one aims to minimize the cost for a
(erroneous) future prediction. Since the set of classical
states is of measure zero, it would be extremely risky bet
for a classical state. Therefore a Bayesian procedure is
actually not expected to yield such a result, contrary to
what the authors implicitly claim.

The issues mentioned above already lead to my clear
recommendation against a publication.

Reply to Referee 1

This referee recommendation for rejection is based on
outright misleading statements, some of them are even
wrong, as can be verified in the graduate textbooks on
probability theory.

The referee is also expected to read the manuscript to
the very end before judging on its validity and it does
not seem to have occurred in this particular case.

Our manuscript touches on the recurrent issue of the
Quantum Mechanics: the reality of the quantum state.
This issue is of continuous debate to this very day. The
quantum de Finetti representation for the Quantum To-
mography was proposed to replace the notion of an un-
known state from the Bayesian Quantum Tomography by
making a claim about the universality of this prior. We
summarize their claim: it was proposed as a universal
prior for the whole ensemble of the exchangeable states
(which can be consulted in Refs. [14,15]).

The classical de Finetti representation involves joint
probability of an infinite sequence of exchangeable vari-
ables, quite contrary to the referee statement.

We show that if one takes the quantum de Finetti rep-
resentation as an universal prior – i.e. seriously – one
immediately comes to a contradiction. We show that
the roots of this contradiction are in the linearity of
the Quantum Mechanics, which makes one to mix the
knowledge on the state with the state itself – a proce-
dure not possible in the general classical statistics where
the Bayesian probability and the unknown parameters
are not mixed in one object.

Round 2

A main finding of this paper is that almost all ex-
changeable priors over a collection of subsystems give

rise to non-zero discord, and hence non-classical corre-
lations between the subsystems. It is then argued that
this is problematic in a situation where it is ”known”
that there are no such correlations. The authors sug-
gest that, therefore, one cannot reasonably represent the
fact that there are no non-classical correlations by a de
Finetti prior. They then argue that this is due to the
fact that in quantum theory ”one mixes one’s knowledge
about the state and the representative of the state in one
density matrix.”
While I agree with the very last sentence, I think it

is also the source of a confusion that led the authors to
draw wrong conclusions. Take, as an example, an ex-
periment where one player (let us call him A) prepares
a string of identical bits, e.g., 000000. There are obvi-
ously no correlations in this bit string. However, another
player (B) may only know that Player A prepares strings
consisting of (uncorrelated) identical bits, but does not
know whether it is 000000 or 111111. If we now describe
the knowledge of B by a probability distribution (e.g.,
one that assigns probability 1/2 to 000000 and 1/2 to
111111) then the subsystems are clearly strongly corre-
lated. But this correlation is simply due to B’s ignorance
of one bit (rather than a ”physical” correlation generated
by Player A). Note that this issue has been extensively
discussed in the literature, see, e.g., Phys. Rev. Lett.
109, 120403 (2012).
Summarizing, I agree with the authors’ technical claim

that there is non-zero discord in the considered de Finetti
states. However, I do not see any reason why this should
be physically relevant or why one should be concerned
about this. It may well be that the authors have a point
that I (as well as the other referee) missed, but in this
case it may be worth if they rewrite their manuscript and
try to make their line of argument clearer.
In view of the above assessment, I recommend not to

accept this paper for publication.

Reply to Referee 2

We have carefully analyzed what the second Referee
has written in the objections part of his/her report and
have found that: (i) There is no concrete statement of
what is actually wrong in our arguments. His/her state-
ment ”While I agree with the very last sentence, I think
it is also the source of a confusion that led the authors to
draw wrong conclusions.” does not point what conclu-
sions are wrong and why. Moreover, the Referee agrees
with all technical part of the manuscript.
(ii) His/her example of spurious correlations is both

wrong and irrelevant. First of all, we consider the quan-
tum correlations which are not possible in the classical
setting. We do not consider any classical correlations
contained in the density matrix. Second, we are sur-
prised to find out that his/her knowledge of the elemen-
tary probability theory is deficient. Indeed, let us cite
the report.
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Referee: Take, as an example, an experiment where
one player (let us call him A) prepares a string of identical
bits, e.g., 000000. There are obviously no correlations in
this bit string.
Our remark: The string ”00000” , i.e. x1x2x3, etc,

where all xk = 0, k = 1, 2, 3..., consist of the maximally
correlated random values xk (i.e. result of a particular
measurement is perfectly correlated with the number of
this measurement).
Referee: However, another player (B) may only know

that Player A prepares strings consisting of (uncorre-
lated) identical bits, but does not know whether it is
000000 or 111111. If we now describe the knowledge of
B by a probability distribution (e.g., one that assigns
probability 1/2 to 000000 and 1/2 to 111111) then the
subsystems are clearly strongly correlated. But this cor-
relation is simply due to B’s ignorance of one bit (rather
than a ”physical” correlation generated by Player A).
Our remark: This example is wrong. In the present

formulation, there are correlations in both cases, in ei-
ther version of the description by player A or by player
B. Both players believe and would agree upon the same
thing – correlations.
Finally, this is not what we consider in the quantum

case. In the quantum case player A has a tensor prod-
uct of equal density matrices (ρ). His systems are not
quantum correlated (trivially being only classically cor-
related!). Player B on the other hand, if he assumes the
quantum de Finetti representation, would have quantum
correlated individual systems. given by a nonzero quan-
tum discord (see our manuscript). Obviously, this is quite
contrary to the classical case presented by the Referee.
Why the Referee has brought up this example is totally
mysterious for us. Moreover, the quantum correlations
lead to predictions of observable events, quite indepen-
dent of the local observer or his/her beliefs, and thus
must be taken seriously.
There is also suggestion of an irrelevant reference in

his/her report:
Referee: Note that this issue has been extensively

discussed in the literature, see, e.g., Phys. Rev. Lett.
109, 120403 (2012).
Our remark: While being an important result, it

hardly touches the issues raised in the manuscript.
Referee: Summarizing, I agree with the authors’ tech-

nical claim that there is non-zero discord in the consid-
ered de Finetti states. However, I do not see any reason
why this should be physically relevant or why one should
be concerned about this.
Our reply: Thus, the Referee makes the following

point: it is of no importance if there are any spurious
quantum correlations in the prior used for Bayesian to-
mography. We remind that the Bayesian approach is in
its essence the updating procedure on the ”knowledge”
(we follow the Referee style and put this word in quotes).
We then observe the following: if there are the quantum

discord correlations, they are passed with a high prob-
ability to the posterior state (see our manuscript). The
correlations are measurable and lead to observable essen-
tially quantum effects (see in the manuscript for the refer-
ences). Thus the observer consistently fools him/herself,
which can de detected by a joint measurement on the rest
of the systems.
The problem is not the Bayesian methods, of course.

It is the only possible extension of the usual mathemat-
ical logic including the probabilistic reasoning (see for
instance, the last of our references, the excellent book by
late E. T. Jaynes). The problem is in the prior, which
does not allow one to account for absence of the quan-
tum correlations which is implied by the very design of
the most tomographic experiments (in most of the cases
the systems are prepared in different time slots and are
not quantum correlated). Why then the Referee credits
his/her ”knowledge”, that the systems are exchangeable,
and discards the ”knowledge” of absence of the quantum
discord correlations? More importantly, where his/her
”knowledge” of the exchangeability come from? We re-
mark that we can prove or disprove our ”knowledge” of
absence of any quantum correlations by making use of the
user/observer independent quantum resource – the pres-
ence of the quantum discord, whereas he/she can hardly
to do the same with his/her ”knowledge”. Who’s prior
assumptions are then more correct? We believe the an-
swer is obvious.
We conclude that while the Referee has agreed to all

the technical part of the manuscript, he/she has also
found no errors in our arguments, by not providing any
concrete example of such. His/her example, on the basis
of which he/she seem to reject our conclusions is both
wrong (from the point of view of the basic probability
theory) and irrelevant. We do not understand why the
Referee has such conclusion. We ask for another round
of the review and urge for a thoughtful reading of the
manuscript by future Referees.

Round 3

Quantum Bayesian inference as introduced by Jones
and later on discussed and studied by several authors (see
references in the manuscript) is used to estimate (classi-
cal) information encoded in a quantum system. Specifi-
cally, one can assume that information about the state of
a single qubit is encoded (via a preparation procedure)
into a single two-level system (physical representation of
a qubit). To be more explicit about the encoding stage:
a specific reference (known) state of a physical qubit (let
say prepared in the state ρ0) is unitarily rotated (trans-
formed). The two angles associated with such SU(2) ro-
tation represent the classical information encoded into a
single physical system.
Later on this information about the two angles (a qubit
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state) can be recovered by performing a measurement on
the single two-level system. If the measurement is opti-
mal [in a sense as described by Holevo, or Massar and
Popescu, and Derka et al.] then using a prior knowl-
edge about the situation one can make an estimation of
the information that has been encoded into the quantum
system. There exists a strict bound on the fidelity of
such estimation. It is well known that the fidelity of es-
timation is equal to 2/3 providing it is assumed that the
angles of the SU(2) transformation have been encoded
via rotation of a pure state ρ0.
However, the information about the single-qubit state

can be encoded into a finite ensemble of physical qubits.
These qubits can be initially prepared in a product state
ρ⊗N or more complex reference state, e.g. entangled
state ofN physical qubits. These physical qubits are then
rotated in order to encode an information about a single
qubit [different representations of SU(2)]. Given differ-
ent encoding schemes (of the same information about a
state of a single qubit!) one uses different measurements
in order to optimally recover the encoded information.
For instance, if the information about a single qubit is
encoded in two identically rotated physical qubits then
one can perform on these two qubits either local measure-
ments or non-local measurements. As shown by Massar
and Popescu and Derka et al. optimal non-local mea-
surements lead to a better estimation of the informa-
tion about the single qubit than that when the infor-
mation was encoded into two identically prepared phys-
ical qubits. This well known result can be extended to
the case when the SU(2) rotation (information about a
single-qubit) is encoded into N physical qubits. If the ini-
tial the reference state ofN physical qubits is a pure state
|0〉⊗N then the fidelity of information about the single-
qubit state encoded in this system can be recovered with
the fidelity (N + 1)/(N + 2). It has to be stressed that
the information about the single-qubit state can be en-
coded into highly-entangled physical qubits systems. In

fact one can find an optimal N -qubit (entangled) state
into which an information about a single qubit is encoded
optimally (see papers by Gisin et al., Bagan et al. and
also by Rapcan et al. PRA 84, 032326 (2011)) and can
also be recovered optimally.
This is a typical task of quantum Baysian inference of

information about a single-qubit state. Obviously, one
can ask a question about an (optimal) encoding and de-
coding of two-qubit state into a pair of physical qubits
or a bigger ensemble of physical qubits. Here the task
will be to use the procedure described above to estimate
a two-qubit state. A two-qubit state at the stage of en-
coding can be entangled, but if incomplete measurement
is performed the estimated two-qubit state might not ex-
hibit any entanglement. But opposite can’t happen pro-
viding one is using the Baysian inference properly, that
is, if the information encoded into quantum systems cor-
responds to non-entangled (separable) two-qubit state,
the reconstructed two-qubit state can’t exhibit entangle-
ment. And this is irrespective whether the information
is encoded into two physical qubits or a large ensemble
of physical qubits.
I am writing this (rather trivial comment) in order

to show that the problem discussed by the authors in
their paper is artificial. I believe the first referee made it
very clear when s/he wrote: The symmetrized Bayesian
estimate is not used to make prediction about correla-
tions between individual copies but rather about single
instances. That is, the authors are using the single-
qubit estimation procedures (as described in my com-
ments above) and they are trying to make conclusions
about correlations between qubits in the ensemble.
Given the character of responses to reports of previous

referees I might expect that the authors will strongly dis-
agree with my conclusion, but in my humble opinion the
paper is not suitable for publication since it deals with
an artificial problem that does not exist providing the
quantum Bayesian estimation is correctly applied.


