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Abstract. Bobkov (J. Theoret. Probab. 18(2) (2005) 399–412) investigated
an approximate de Finetti representation for probability measures, on product
measurable spaces, which are symmetric under permutations of coordinates.
One of the main results of that paper was an explicit approximation bound for
permanents of complex rectangular matrices, which was shown by a somewhat
complicated induction argument. In this paper, we indicate how to avoid the
induction argument using an (asymptotic) expansion. Our approach makes
it possible to give new explicit higher order approximation bounds for such
permanents and in turn for the probability measures mentioned above.

1. Introduction

Suppose that X := (X1, X2, X3, . . . ) is an infinite exchangeable sequence of
random variables on a probability space (Ω,A, P ) with values in a measurable space
(S,S), that is, the distribution PX of X on the infinite product measurable space
(S∞,S⊗∞) is invariant under permutations of a finite number of coordinates. The
de Finetti Theorem says that, under mild assumptions on the space (S,S), there is a
probability space (T, T , ν) and a Markov kernel µ : T ×S −→ [0, 1], (t, A) 7→ µt(A)
such that

PX =

∫

T

(µt)
⊗∞ dν(t).

For instance, it suffices to assume that (S,S) is a Borel (or standard) measurable
space, i.e. Borel isomorphic to some Borel measurable subset of R (see Hewitt and
Savage [10] or Diaconis and Freedman [6]).

For a finite exchangeable sequence, an analogous representation does not gener-
ally hold, but there are approximate de Finetti results. In what follows, let N ∈ N,
n ∈ N = {1, . . . , N}, and let YN = (X1, . . . , XN ) be an exchangeable family of S-
valued random variables, that is, the distribution P YN of YN , defined on (SN ,S⊗N ),
is invariant under permutation of coordinates. Let Q1 be the probability measure
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on (Sn,S⊗n) defined by

Q1(A) =

∫ ( 1

N

N∑

j=1

δXj(ω)

)⊗n

(A) dP (ω)

for A ∈ S⊗n, where δx denotes the Dirac measure at the point x ∈ S. In other
words, Q1 is the P -expectation of the n-th power of an empirical measure on
(SN ,S⊗N ). The following results can be found in Diaconis and Freedman [6].
They showed that

dTV(P
Yn , Q1) ≤ 1− N !

(N − n)!Nn
≤ n(n− 1)

2N
,(1.1)

where dTV(R,R′) = supA∈S⊗n |R(A)− R′(A)| denotes the total variation distance

between finite signed measures R and R′ on (Sn,S⊗n). Hence, if n2

N is small then

P Yn has an approximate de Finetti representationQ1. It turned out that, in general,
the bound (1.1) is sharp. However, if S is finite and of cardinality |S| = d ∈ N,
then the nice inequality

dTV(P
Yn , Q1) ≤

dn

N
(1.2)

is available, which, in the case of finite S, is better than (1.1) if d is sufficiently
small compared to n.

On the other hand, it is possible to obtain similar good bounds in the general
case if the total variation distance is replaced by a weaker metric. Let Fn be the
set of all functions f : Sn −→ C such that measurable f1, . . . , fn : S −→ C exist
with |fk(xk)| ≤ 1 for k ∈ n and f(x) =

∏n
k=1 fk(xk) for all x = (x1, . . . , xn) ∈

Sn. We write f =
⊗n

k=1 fk. Furthermore, let Nn
6= = {(j1, . . . , jn) ∈ Nn | jk 6=

jℓ for all k, ℓ ∈ n with k 6= ℓ}.
Bobkov [3] showed in his Theorem 1.1 (see also p. 405 there) the inequality

sup
f∈Fn

∣∣∣
∫

f d(PYn −Q1)
∣∣∣ ≤ C

n

N
with C = 16.(1.3)

For the proof, he used the representation

∫
f d(P Yn −Q1) =

∫ ( n∏

k=1

fk(Xk(ω))−
∫

f d
( 1

N

N∑

j=1

δXj(ω)

)⊗n)
dP (ω)

=

∫ ( (N − n)!

N !

∑

j∈Nn
6=

n∏

k=1

fk(Xjk(ω))−
n∏

k=1

( 1

N

N∑

j=1

fk(Xj(ω))
))

dP (ω)(1.4)

for f =
⊗n

k=1 fk ∈ Fn and a remarkable approximation result for permanents of
complex rectangular matrices (see Theorem A below), which he proved by using a
somewhat complicated induction argument. The permanent of a complex rectan-
gular matrix Z = (zj,k) ∈ CN×n with N ∈ N and n ∈ N is defined by

Per(Z) :=
∑

j∈Nn
6=

n∏

k=1

zjk,k.

For general properties of permanents, we refer the reader to Minc [13] and Cheon
and Wanless [5].
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Theorem A. (Bobkov [3, Theorem 2.1]) Let N ∈ N, n ∈ N and Z = (zj,k) ∈
C

N×n. For j ∈ N and k ∈ n, we assume that |zj,k| ≤ 1 and set z̃k = 1
N

∑N
j=1 zj,k.

Then
∣∣∣(N − n)!

N !
Per(Z)−

n∏

k=1

z̃k

∣∣∣ ≤ C
n

N
with C = 16.(1.5)

From Proposition 4.1 in Bobkov [2] it follows that (1.3) and (1.5) hold with the
better constant C = 6 if zj,k = zj,1 for all j ∈ N and k ∈ n. However, Theorem 2.13
below shows that C can always be taken smaller than 3.57.

For two finite signed measures R and R′ on (Sn,S⊗n), let

dPV(R,R′) = sup
A1,...,An∈S

|R(A1 × . . .×An)−R′(A1 × . . .×An)|

denote the so-called product variation between R and R′. Obviously dPV is a metric
on the set of all finite signed measures on (Sn,S⊗n). Furthermore,

dPV(R,R′) ≤ sup
f∈Fn

∣∣∣
∫

f d(R −R′)
∣∣∣.

Therefore (1.3) and the inequalities of Theorem 1.1 below imply bounds for dPV.
In the next section, we present refinements of (1.5), see Theorems 2.8, 2.13 and

Corollary 2.12. The latter together with (1.4) and a similar representation implies
Theorem 1.1 below, the first part of which is better than (1.3) with C = 3.57 if
n
N ≤ 1

2 . The second part shows that, if n ≥ 2 and in turn N ≥ 2, a more accurate

approximation of P Yn by a finite signed measure Q2 on (Sn,S⊗n) is possible, where

Q2(A) = Q1(A) −
1

N(N − 1)

∑

K⊆n: |K|=2

N∑

j=1

∫ (⊗

k∈n

Rj,k,K(ω)
)
(A) dP (ω)

for A ∈ S⊗n and

Rj,k,K(ω) =

{
δXj(ω) − 1

N

∑N
ℓ=1 δXℓ(ω), if k ∈ K,

1
N

∑N
ℓ=1 δXℓ(ω), if k ∈ n \K.

Theorem 1.1. Under the assumptions above and if n
N < 1, we have

sup
f∈Fn

∣∣∣
∫

f d(PYn −Q1)
∣∣∣ ≤ n

N
+ 2.12

( n
N )3/2

(1 − n
N )3/4

,(1.6)

sup
f∈Fn

∣∣∣
∫

f d(PYn −Q2)
∣∣∣ ≤

√
3
( n

N

)3/2

+ 2.27
( n
N )2

(1− n
N )3/4

, if n ≥ 2.(1.7)

Higher order results are also possible using Theorem 2.8 or Theorem 2.13 below.
We omit the details.

2. Approximation of permanents

For n ∈ N, the indeterminate x = (x1, . . . , xn) and r ∈ Zn
+ = {0, 1, 2, . . .}n,

we set xr =
∏

k∈n x
rk
k and write ar = Coeff(xr ;

∑
s∈Z

n
+
asx

s) for the coefficient

of xr in the formal power series
∑

s∈Z
n
+
asx

s, (as ∈ C). Sometimes y will be

our indeterminate. However, the symbols x and y may have other meanings as
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indicated below. In what follows, we use the simple fact that, for N ∈ N, n ∈ N
and Z = (zj,k) ∈ CN×n,

Per(Z) = Coeff
(
x1 · · ·xn;

N∏

j=1

(
1 +

n∑

k=1

zj,kxk

))
.(2.1)

Furthermore, if additionally Z has identical columns, i.e. zj,k = zj,1 for all j ∈ N
and k ∈ n, then

Per(Z) = n! Coeff
(
yn;

N∏

j=1

(1 + zj,1y)
)
.(2.2)

The main result of this section is Theorem 2.8 below and requires the following
lemmas, the first of which plays a prominent role in the theory of polynomials over
infinite dimensional spaces. Its proof is due to Hörmander [11, Theorem 4]; see also
Harris [9] and Dineen [7, Proposition 1.44 and the notes on page 79]. However, first
versions for real spaces were already shown in Kellogg [12] and Banach [1].

Lemma 2.1. Let n ∈ N, E be a complex Hilbert space, F be a complex Banach
space, g : En −→ F be n-linear (i.e. linear in each component), continuous and
symmetric in its arguments. Let ĝ(x) = g(x, . . . , x) for x ∈ E and

‖g‖ = sup{‖g(x1, . . . , xn)‖ |xi ∈ E, ‖xi‖ ≤ 1 for each i ∈ n}
‖ĝ‖ = sup{‖ĝ(x)‖ |x ∈ E, ‖x‖ ≤ 1}.

Then ‖g‖ = ‖ĝ‖.

The proof of the next lemma uses Lemma 2.1 and the Cauchy integral formula.
We note that the more complicated Lemma 3 in [16] only yields a weaker result
under the assumptions used here. We always set 00 = 1.

Lemma 2.2. Let N ∈ N, n ∈ N and A = (aj,k) ∈ CN×n. For each k ∈ n, we

assume that
∑N

j=1 aj,k = 0 and set αk = 1
N

∑N
j=1 |aj,k|2. Then we have

|Per(A)| ≤ n!NN/2

(N − n)(N−n)/2nn/2

n∏

k=1

√
αk.(2.3)

Proof. We may assume that αk 6= 0 for each k ∈ n. Let E = {x = t(x1, . . . , xN ) ∈
CN×1 | ∑N

j=1 xj = 0} be equipped with the standard inner product and consider

F = C, g : En −→ F , g(x(1), . . . , x(n)) = Per(x(1), . . . , x(n)) for x(1), . . . , x(n) ∈ E,
where “t” denotes transposition. It is easily seen that Lemma 2.1 can be applied,
which gives |Per(A)| ≤ ‖ĝ‖Nn/2

∏n
k=1

√
αk. Using (2.2), we obtain for x ∈ E with

‖x‖ ≤ 1 and arbitrary r ∈ (0,∞) that

|ĝ(x)| = n!

2πrn

∣∣∣
∫ π

−π

e−int
N∏

j=1

(
1 + xjre

it
)
dt
∣∣∣

≤ n!

rn
sup

t∈[−π,π]

N∏

j=1

|1 + xjre
it| ≤ n!

rn

(
1 +

r2

N

)N/2

;
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the last inequality follows from the inequality between arithmetic and geometric
means. Indeed, for w ∈ E, we have

N∏

j=1

|1 + wj | =
( N∏

j=1

(1 + 2Re(wj) + |wj |2)
)1/2

≤
(
1 +

1

N

N∑

j=1

|wj |2
)N/2

,

where Re(wj) denotes the real part of wj . Let ε ∈ (0,∞) and

r =
( nN

N − n+ ε

)1/2

.

Letting ε → 0 yields ‖ĝ‖ ≤ n!N(N−n)/2

(N−n)(N−n)/2nn/2 and the result is shown. �

Remark 2.3. Inequality (2.3) can be viewed as a Hadamard type inequality for
permanents of matrices with zero column sums. Another inequality of this type is

(2.4) |Per(Z)| ≤ N !
N∏

k=1

( 1

N

N∑

j=1

|zj,k|2
)1/2

,

which is valid for general quadratic matrices Z = (zj,k) ∈ CN×N with N ∈ N.
Carlen et al. [4] gave two proofs of (2.4), which, however, also follows directly from
Lemma 2.1 together with the inequality between arithmetic and geometric means.

Inequality (2.4) can be used to derive an alternative bound for the left-hand side
of (2.3) as follows. Consider the assumptions of Lemma 2.2 and define Z = (zj,k) ∈
CN×N with zj,k = aj,k for j ∈ N , k ∈ n and zj,k = 1 for j ∈ N , k ∈ N \ n. Then

(2.5) |Per(A)| = |Per(Z)|
(N − n)!

≤ N !

(N − n)!

n∏

k=1

√
αk.

However, it turns out that (2.3) is always better than the inequality in (2.5), since

NN

(N − n)N−nnn
≤

(N−n∏

m=1

N −m+ 1

N − n−m+ 1

)( n∏

m=1

N −m+ 1

n−m+ 1

)
=

(
N

n

)2

.

Lemma 2.4. Let n ∈ N, m ∈ n0 = {0, . . . , n} and w1,k, w2,k ∈ C for k ∈ n. Then

∣∣∣Coeff
(
ym;

n∏

k=1

(w1,k + w2,ky)
)∣∣∣ ≤

(
n

m

)( 1

n

n∑

k=1

|w2,k|2
)m/2( 1

n

n∑

k=1

|w1,k|2
)(n−m)/2

.

Proof. Using Cauchy’s inequality, we obtain

∣∣∣Coeff
(
ym;

n∏

k=1

(w1,k + w2,ky)
)∣∣∣ =

∣∣∣
∑

K⊆n: |K|=m

( ∏

k∈K

w2,k

) ∏

k∈n\K

w1,k

∣∣∣

≤
( ∑

K⊆n: |K|=m

∏

k∈K

|w2,k|2
)1/2( ∑

K⊆n: |K|=m

∏

k∈n\K

|w1,k|2
)1/2

= Coeff
(
ym;

n∏

k=1

(1 + |w2,k|2y)
)1/2

Coeff
(
yn−m;

n∏

k=1

(1 + |w1,k|2y)
)1/2

.

The assertion now follows from a result due to Maclaurin, which says that if

g1, . . . , gn ∈ [0,∞), then
(

1

(nℓ)
Coeff(yℓ;

∏n
k=1(1 + gky))

)1/ℓ
is non-increasing in

ℓ ∈ n, see Hardy et al. [8, Theorem 52, page 52]. �
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Lemma 2.5. Let n,N ∈ N, m ∈ Z+ with m ≤ min{n,N}, (aj,k) ∈ CN×n with∑N
j=1 aj,k = 0 for all k ∈ n, b ∈ C

n, α = 1
nN

∑N
j=1

∑n
k=1 |aj,k|2, β = 1

n

∑n
k=1 |bk|2.

Then
∣∣∣Coeff

(
x1 · · ·xn;

( n∑

k=1

bkxk

)n−m N∏

j=1

(
1 +

n∑

k=1

aj,kxk

))∣∣∣ ≤ n!NN/2αm/2β(n−m)/2

(N −m)(N−m)/2mm/2
.

Proof. Let αk = 1
N

∑N
j=1 |aj,k|2, (k ∈ n). An application of Lemma 2.2 gives

1

(n−m)!

∣∣∣Coeff
(
x1 · · ·xn;

( n∑

k=1

bkxk

)n−m N∏

j=1

(
1 +

n∑

k=1

aj,kxk

))∣∣∣

=
∣∣∣

∑

K⊆n: |K|=n−m

Coeff
(
x1 · · ·xn;

( ∏

k∈K

(bkxk)
) N∏

j=1

(
1 +

n∑

k=1

aj,kxk

))∣∣∣

=
∣∣∣

∑

K⊆n: |K|=n−m

Coeff
( ∏

k∈n\K

xk;

N∏

j=1

(
1 +

∑

k∈n\K

aj,kxk

)) ∏

k∈K

bk

∣∣∣

≤ m!NN/2

(N −m)(N−m)/2mm/2

∑

K⊆n: |K|=n−m

( ∏

k∈n\K

√
αk

) ∏

k∈K

|bk|

=
m!NN/2

(N −m)(N−m)/2mm/2
Coeff

(
ym;

n∏

k=1

(|bk|+
√
αky)

)
.

The proof is easily completed using Lemma 2.4. �

Lemma 2.6. For r ∈ Z+, t, x ∈ [0, 1], we have
∑r

m=0(m+ 1)txm ≤ (1−xr+1

1−x )1+t.

Proof. This follows from
∑r

m=0(m+1)xm = 1−(r+2)xr+1+(r+1)xr+2

(1−x)2 ≤ (1−xr+1

1−x )2 and

Hölder’s inequality, i.e.
∑r

m=0(m+1)txm ≤ (
∑r

m=0(m+1)xm)t(
∑r

m=0 x
m)1−t. �

The following lemma is more precise than Lemma 3 in [15].

Lemma 2.7. Let ℓ,m,N ∈ N, ℓ ≤ m ≤ N and Cℓ =
(

eℓℓ!
ℓℓ+1/2

)1/2
. Then

NN/2

(N −m)(N−m)/2mm/2+1/4
(
N
m

)1/2 ≤ Cℓ.(2.6)

Proof. Let p(m,N) = NN

(N−m)N−m(Nm)
. Since q(k) := ( k

k+1 )
k is decreasing in k ∈ Z+,

we have

p(m,N)

p(m,N + 1)
=

NN(N + 1−m)N+1−m(N + 1)

(N + 1)N+1(N −m)N−m(N + 1−m)
=

q(N)

q(N −m)
≤ 1.

Hence p(m,N) ≤ limÑ→∞ p(m, Ñ) = emm! and therefore the left-hand side of

(2.6) is bounded by ( emm!
mm+1/2 )

1/2. Since this is decreasing in m (cf. Mitrinović [14,
p. 183]), the assertion follows. �

We now present our first main result, which generalizes Theorem A. Indeed, it will
turn out that γ ≤ n

N and, for ℓ = 1, Hℓ(Z) =
∏n

k=1 z̃k, see the Remarks 2.9 and 2.10
below. A further advantage of γ is that it can be equal to zero, namely in the case
zj,k = z̃k for all j ∈ N and k ∈ n. We note that the singularity in (2.7) can be
removed, see Theorem 2.13 below.
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Theorem 2.8. Let N ∈ N, n ∈ N , ℓ ∈ n and Z = (zj,k) ∈ CN×n. For j ∈ N

and k ∈ n, we assume that |zj,k| ≤ 1 and set z̃k = 1
N

∑N
j=1 zj,k, aj,k = zj,k − z̃k,

Uj(x) =
∑n

k=1 aj,kxk, where x = (x1, . . . , xn) is an indeterminate. Further, let Cℓ

be as in Lemma 2.7,

α =
1

nN

N∑

j=1

n∑

k=1

|aj,k|2, β =
1

n

n∑

k=1

|z̃k|2, γ =
nα

N
min

{
n,

1

1− β

}
,

Gm(Z) =
(N −m)!

(n−m)!N !
Coeff

(
x1 · · ·xn;

( N∏

j=1

(1 + Uj(x))
)( n∑

k=1

z̃kxk

)n−m)

for m ∈ n0 and set Hℓ(Z) =
∑ℓ

m=0 Gm(Z). If γ < 1, then

∣∣∣ (N − n)!

N !
Per(Z)−Hℓ(Z)

∣∣∣ ≤ (ℓ + 1)1/4Cℓ+1
γ(ℓ+1)/2

(1− γ)3/4
.(2.7)

Proof. Let Wm(x) = Coeff(ym;
∏N

j=1(1 + Uj(x)y)) for m ∈ N0. In view of (2.1),

N∏

j=1

(
1 +

n∑

k=1

zj,kxk

)
=

N∏

j=1

(
Uj(x) + 1 +

n∑

k=1

z̃kxk

)

=

N∑

m=0

Wm(x)
(
1 +

n∑

k=1

z̃kxk

)N−m

=

N∑

m=0

N−m∑

r=0

(
N −m

r

)
Wm(x)

( n∑

k=1

z̃kxk

)r

,

and

Gm(Z) =
(N −m)!

(n−m)!N !
Coeff

(
x1 · · ·xn; Wm(x)

( n∑

k=1

z̃kxk

)n−m)
,(2.8)

we see that

Per(Z) =

n∑

m=0

(
N −m

n−m

)
Coeff

(
x1 · · ·xn; Wm(x)

( n∑

k=1

z̃kxk

)n−m)

=
N !

(N − n)!

n∑

m=0

Gm(Z)

and therefore (N−n)!
N ! Per(Z) = Hn(Z). Using Lemmas 2.5 and 2.7 and the simple

inequality
(
n
m

)
≤

(
N
m

)
( n
N )m for m ∈ n0, we obtain

∣∣∣(N − n)!

N !
Per(Z)−Hℓ(Z)

∣∣∣ ≤
n∑

m=ℓ+1

|Gm(Z)|

≤
n∑

m=ℓ+1

NN/2

(N −m)(N−m)/2mm/2

(
n
m

)
(
N
m

)αm/2β(n−m)/2

≤ Cℓ+1

n∑

m=ℓ+1

(
n
m

)
(
N
m

)1/2m
1/4αm/2β(n−m)/2

≤ Cℓ+1

n∑

m=ℓ+1

m1/4γm/2
((n

m

)
max

{
1− β,

1

n

}m

βn−m
)1/2

,
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where we used that β ∈ [0, 1]. By applying Cauchy’s inequality and the fact that,
since ℓ ≥ 1,

∑n
m=ℓ+1

(
n
m

)
1

nm ≤ (1 + 1
n )

n − 2 ≤ e− 2 < 1, we obtain

∣∣∣ (N − n)!

N !
Per(Z)−Hℓ(Z)

∣∣∣ ≤ Cℓ+1

( n∑

m=ℓ+1

√
mγm

)1/2

≤ (ℓ + 1)1/4Cℓ+1γ
(ℓ+1)/2

( n−ℓ−1∑

m=0

√
m+ 1γm

)1/2

.

It remains to use Lemma 2.6 with t = 1
2 . �

For the rest of the paper, let the notation of Theorem 2.8 hold.

Remark 2.9. We have γ ≤ n
N , since

α =
1

nN

N∑

j=1

n∑

k=1

|zj,k|2 − β ≤ 1− β.(2.9)

In particular, if |zj,k| = 1 for all j ∈ N and k ∈ n, then α = 1− β. Indeed, writing

zj,k = uj,k + ivj,k and z̃k = ũk + iṽk with uj,k, vj,k ∈ R, ũk = 1
N

∑N
j=1 uj,k and

ṽk = 1
N

∑N
j=1 vj,k, we obtain

α =
1

nN

N∑

j=1

n∑

k=1

((uj,k − ũk)
2 + (vj,k − ṽk)

2)

=
1

nN

n∑

k=1

( N∑

j=1

(u2
j,k + v2j,k)−N(ũ2

k + ṽ2k)
)
,

from which (2.9) follows.

Let us now collect some properties of the first few Gm(Z), where we always
assume that m ∈ n0.

Remark 2.10. The first few Gm(Z) can be evaluated as follows:

G0(Z) =
n∏

k=1

z̃k, G1(Z) = 0,

G2(Z) = − (N − 2)!

N !

∑

K⊆n: |K|=2

( N∑

j=1

∏

k∈K

aj,k

) ∏

k∈n\K

z̃k,

G3(Z) = 2
(N − 3)!

N !

∑

K⊆n: |K|=3

( N∑

j=1

∏

k∈K

aj,k

) ∏

k∈n\K

z̃k.

(2.10)

In order to prove this, let

Vm(x) =

N∑

j=1

(−Uj(x))
m, Wm(x) = Coeff

(
ym;

N∏

j=1

(1 + Uj(x)y)
)

for m ∈ N0. We have

Wm(x) = − 1

m

m−2∑

k=0

Wk(x)Vm−k(x) for m ∈ N,



APPROXIMATE DE FINETTI REPRESENTATION AND PERMANENTS 9

which can be shown in the same way as (10) in [15]. In particular,

W0(x) = 1, W1(x) = 0, W2(x) = −1

2
V2(x),

W3(x) = −1

3
V3(x), W4(x) =

1

8
(V2(x))

2 − 1

4
V4(x).

(2.11)

In view of (2.8), (2.11) and

Coeff
(
x1 · · ·xn; Vm(x)

( n∑

k=1

z̃kxk

)n−m)

= (−1)m
N∑

j=1

Coeff
(
x1 · · ·xn; (Uj(x))

m
( n∑

k=1

z̃kxk

)n−m)

= (−1)m(n−m)!m!

N∑

j=1

∑

K⊆n: |K|=m

( ∏

k∈K

aj,k

) ∏

k∈n\K

z̃k,(2.12)

for m ∈ n, we see that (2.10) is true. We note that the representations in (2.10) of
G2(Z) and G3(Z) have a simple form, but the omitted ones of Gm(Z) with m ≥ 4
are more complicated.

From the above, we obtain that H1(Z) =
∏n

k=1 z̃k and, if n ≥ 2,

(2.13) H2(Z) =

n∏

k=1

z̃k −
1

N(N − 1)

∑

K⊆n: |K|=2

( N∑

j=1

∏

k∈K

aj,k

) ∏

k∈n\K

z̃k.

Remark 2.11. Let us derive some bounds for |G2(Z)| and |G3(Z)|. From (2.12) and
Lemma 2.4 it follows that, for m ∈ n,

∣∣∣Coeff
(
x1 · · ·xn; Vm(x)

( n∑

k=1

z̃kxk

)n−m)∣∣∣

≤ (n−m)!m!

N∑

j=1

∣∣∣Coeff
(
ym;

n∏

k=1

(z̃k + aj,ky)
)∣∣∣

≤ n!

N∑

j=1

( 1

n

n∑

k=1

|aj,k|2
)m/2

β(n−m)/2,

which together with (2.10) gives

|G2(Z)| ≤ n(n− 1)

2(N − 1)
αβ(n−2)/2,

|G3(Z)| ≤ 1

3

n!(N − 3)!

(n− 3)!N !

N∑

j=1

( 1

n

n∑

k=1

|aj,k|2
)3/2

β(n−3)/2.

The inequalities given above can be used to derive bounds for |G2(Z)| and
|G3(Z)| depending on γ. For precise calculations, we use the notation

γ(d) =
nα

N
min

{
dn,

1

1− β

}
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for d ∈ (0,∞), giving γ = γ(1). We have

|G2(Z)| ≤ γ(1/2)max
{
β(n−2)/2,

1

2
n(1− β)β(n−2)/2

}N(n− 1)

(N − 1)n
≤ γ(1/2),(2.14)

|G3(Z)| ≤
√
3
(n− 1)(n− 2)N2

(N − 1)(N − 2)n2

N∑

j=1

( 1

N2

n∑

k=1

|aj,k|2 min
{n

3
,

1

1− β

})3/2

×max
{
β(n−3)/2,

(n
3

)3/2

(1− β)3/2β(n−3)/2
}

≤
√
3

N∑

j=1

( 1

N2

n∑

k=1

|aj,k|2 min
{n

3
,

1

1− β

})3/2

.(2.15)

We note that (2.15) implies that |G3(Z)| is bounded by
√
3(γ(1/3))3/2, which is

however of worse order.

The following result is a consequence of Theorem 2.8, (2.14) and (2.15).

Corollary 2.12. If γ < 1, then
∣∣∣(N − n)!

N !
Per(Z)−

n∏

k=1

z̃k

∣∣∣ ≤ γ(1/2) +
31/4C3 γ

3/2

(1− γ)3/4
,(2.16)

∣∣∣ (N − n)!

N !
Per(Z)−H2(Z)

∣∣∣ ≤
√
3

N∑

j=1

( 1

N2

n∑

k=1

|aj,k|2 min
{n

3
,

1

1− β

})3/2

+
21/2C4 γ

2

(1− γ)3/4
,(2.17)

where the second inequality requires n ≥ 2.

Proof of Theorem 1.1. Inequality (1.6) follows from (2.16) and (1.4), while (1.7)
can be easily be shown using (2.17), (2.13) and the representation
∫

f d(PYn −Q2) =

∫ ( (N − n)!

N !

∑

j∈Nn
6=

n∏

k=1

fk(Xjk(ω))−
n∏

k=1

ζk(ω)

+
1

N(N − 1)

∑

K⊆n: |K|=2

N∑

j=1

∏

k∈K

(
fk(Xj(ω))− ζk(ω)

) ∏

k∈n\K

ζk(ω)
)
dP (ω)

for f =
⊗n

k=1 fk ∈ Fn, where ζk(ω) =
1
N

∑N
j=1 fk(Xj(ω)). �

We now show that the singularity in (2.7) can be removed.

Theorem 2.13. For fixed ℓ ∈ n, let κℓ be the smallest absolute constant such that,
without any restrictions on γ,

∣∣∣(N − n)!

N !
Per(Z)−Hℓ(Z)

∣∣∣ ≤ κℓ γ
(ℓ+1)/2.

Then κℓ ≤ (ℓ+1)1/4Cℓ+1

(1−xℓ)3/4
, where xℓ ∈ (0, 1) is the unique positive solution of the

equation

2 + 21/4C2x
(1− xℓ−1

1− x

)3/4

= (ℓ + 1)1/4Cℓ+1
x(ℓ+1)/2

(1− x)3/4
, (x ∈ (0, 1)).(2.18)

In particular, κ1 ≤ 3.57, κ2 ≤ 5.53 and κ3 ≤ 7.08.
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Proof. Dividing (2.18) by x(ℓ+1)/2 yields a decreasing left-hand side, whereas the
right-hand side remains increasing in x. Therefore (2.18) has indeed a unique
positive solution xℓ ∈ (0, 1). Similarly as in the proof of Theorem 2.8, we have

∣∣∣ (N − n)!

N !
Per(Z)−Hℓ(Z)

∣∣∣ ≤ (N − n)!

N !
|Per(Z)|+ |Hℓ(Z)| ≤ 2 +

ℓ∑

m=2

|Gm(Z)|

≤ 2 + 21/4C2γ
( ℓ−2∑

m=0

√
m+ 1γm

)1/2

≤ 2 + 21/4C2γ
(1− γℓ−1

1− γ

)3/4

=: h(γ).

If γ ∈ [0, xℓ], we obtain by Theorem 2.8 that
∣∣∣ (N − n)!

N !
Per(Z)−Hℓ(Z)

∣∣∣ ≤ (ℓ+ 1)1/4Cℓ+1
γ(ℓ+1)/2

(1− γ)3/4
≤ (ℓ+ 1)1/4Cℓ+1

(1− xℓ)3/4
γ(ℓ+1)/2.

If γ ∈ (xℓ,∞), then

∣∣∣(N − n)!

N !
Per(Z)−Hℓ(Z)

∣∣∣ ≤ h(γ) ≤ h(xℓ)

x
(ℓ+1)/2
ℓ

γ(ℓ+1)/2 =
(ℓ+ 1)1/4Cℓ+1

(1 − xℓ)3/4
γ(ℓ+1)/2.

It remains to use that x1 ≤ 0.5611, x2 ≤ 0.7222 and x3 ≤ 0.7812. �
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