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The quantum versions of de Finetti’s theorem derived so far express the convergence of n-partite
symmetric states, i.e., states that are invariant under permutations of their n parties, towards
probabilistic mixtures of independent and identically distributed (i.i.d.) states of the form σ

⊗n.
Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct gen-
eralization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by
considering invariance under orthogonal transformations in phase space instead of permutations in
state space, which leads to a new type of quantum de Finetti’s theorem that is particularly relevant
to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect
to this continuous symmetry in phase space is proven to converge towards a probabilistic mixture
of i.i.d. Gaussian states (actually, n identical thermal states).

I. INTRODUCTION

There has been a renewed interest in de Finetti’s theo-
rem [1, 2] over the recent years, especially in the context
of quantum information theory (see, e.g., [3]). In a clas-
sical setting, de Finetti’s theorem addresses the statis-
tics of large composite systems obeying some fundamen-
tal symmetry (e.g., invariance under permutations of its
parts), stating that its parts can be well approximated
by identical independent subsystems. In the language of
probability theory, a permutation-invariant joint proba-
bility distribution of n random variables is shown to ap-
proach a probabilistic mixture of independent and identi-

cally distributed (i.i.d.) variables. In a quantum setting,
the theorem makes the connexion between two types of
n-mode states in H⊗n: symmetric states, i.e., states that
are invariant under permutations of their subsystems (ρ
such that ρ = πρπ† for any permutation π ∈ Sn), and
mixtures of i.i.d. states of the form σ⊗n for some state
σ ∈ H. Whereas an i.i.d. state is obviously symmet-
ric, the converse is not true in general. This situation
is rather frustrating as the symmetry of a state is often
known, or can be easily enforced by application of a ran-
dom permutation of the subsystems, while it rather is the
i.i.d. property that one wishes to have as it considerably
simplifies the analysis (an i.i.d. state is fully described
in H instead of H⊗n). According to the quantum de
Finetti’s theorem [4, 5], a symmetric state becomes in-
creasingly close to a mixture of i.i.d. states as one traces
out more of its parts. Attempts at characterizing the
speed of convergence towards an i.i.d. state are more
recent, both in the classical case [6] and quantum case
[7, 8]: the trace distance between the partial trace over
(n−k) parties of an n-partite symmetric state and a mix-
ture of k-partite i.i.d. states is bounded from above by
2d2k/n, where d is the dimension of the Hilbert space.

Interestingly, a striking difference with the classical
case is that the trace distance in the quantum case neces-
sarily depends on the dimension of the Hilbert space. In
particular, this rules out the possiblity of a direct general-
ization of the theorem to an infinite-dimensional Hilbert
space. This was proven in Ref. [8], where a counter-
example was exhibited: the n-dimensional generalization
of the singlet state 1/

√
n!

∑

π sign(π) π(|0〉 ⊗ |1〉 ⊗ · · · ⊗
|n − 1〉) is symmetric but any bipartite part, being a
mixture of singlet states, cannot be approximated by a
mixture of i.i.d. states. Even if a general quantum de
Finetti’s theorem does not hold in infinite dimension, it
is still possible to establish interesting versions of the
theorem by restricting the set of states considered. For
instance, such results can be obtained for coherent cat
states [9] and Gaussian states [10].

In this paper, we follow a rather different approach
by considering a symmetry group different from the per-
mutations over the n subsystems of a state in H⊗n.
We investigate the properties of orthogonally-invariant

states ρ, i.e., states that are invariant under the action
of any n-mode Gaussian unitary operator corresponding
to a real symplectic orthogonal transformation in the 2n-
dimensional phase space of ρ. In [11], we had touched this
question in the asymptotic limit n → ∞, and exhibited
the connection between orthogonally invariant states and
(probabilistic mixtures of) i.i.d. thermal states. Here, we
prove a finite version of this result, which leads to a gen-
uine quantum continuous-variable de Finetti’s theorem
in phase space representation.

The outline of the paper is as follows. In Section II,
we introduce the concept of orthogonally invariant quan-
tum states, and give an alternative characterization of
these states in the Fock state representation. Then, in
Section III, we prove a quantum de Finetti theorem for
orthogonally invariant n-mode states, which bounds the
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convergence speed towards i.i.d. thermal states for finite
n. Finally, in Section IV, we discuss the perspectives of
this continuous-variable quantum de Finetti theorem and
draw conclusions.

II. ORTHOGONALLY INVARIANT STATES

The state ρ of an n-mode bosonic quantum system
can be completely characterized by its Wigner function
in the 2n−dimensional phase space parametrized by the
quadratures x1, p1, . . . , xn, pn, namely

W (x1, p1, · · · , xn, pn)

=
1

πn

∫ ∞

−∞

dy1 · · ·dyn ei(p1y1+···+pnyn)

× 〈x1 − y1, · · · , xn − yn|ρ|x1 + y1, · · · , xn + yn〉. (1)

The Wigner function is well known to be a quasi-
probability distribution, not a genuine probability dis-
tribution as it can take negative values. However, by
integrating it over one quadrature (x or p) for each
mode, one obtains the n-variate probability distribution
characterizing the outcomes of the n homodyne mea-
surements (one performed on each mode). For instance
∫∫∫

dp1dx2dp3 W (x1, p1, x2, p2, x3, p3) is the joint prob-
ability distribution for the outcomes of the homodyne
measurements of quadratures x1, p2, and x3.

One is of course not restricted to measuring quadra-
tures xk or pk, but can also measure rotated quadratures
with any angle θk in phase space. Thus, from a Wigner
function, one can always construct a genuine probabil-
ity distribution p(r1, · · · , rn), where rk corresponds to a
particular rotated quadrature of the kth mode. In addi-
tion, one can also mix several modes with the help of a
passive linear interferometer before performing the homo-
dyne measurements, which means that the variables rk

become (normalized) linear combinations of the quadra-
tures x1, p1, . . . , xn, pn. In summary, starting with an
arbitrary Wigner function, one can always construct a
family of n-variate probability distributions p(r1, · · · , rn)
using the following procedure: first, one process the n
modes through a passive linear interferometer (a network
of beamsplitters and phase shifters), and then one mea-
sures one fixed quadrature for each output mode.

Let us now consider possible symmetries of the joint
probability distribution characterizing the n random
variables rk. A first symmetry, which is standard in
the context of de Finetti’s theorem, is the invariance
under permutations of the variables. This means that
p(r1, · · · , rn) = p(rπ(1), · · · , rπ(n)) for any permutation
π ∈ Sn, which denotes the group of permutations on
{1, . . . , n}. Another symmetry, which has not been ex-
plored so far in the quantum context, emerges nat-
urally if one considers the real-valued random vector
r = (r1, · · · , rn) ∈ R

n. Note that the previous permuta-
tion symmetry simply means that the distribution prob-
ability is not affected by reordering the coordinates. As

we work in R
n, however, it seems more appropriate to

substitute a discrete symmetry group such as Sn with a
continuous symmetry group. A natural choice in this re-
spect is the orthogonal group O(n), that is, the group of
orthogonal transformations (or isometries) acting on vec-
tor r. Note that applying an orthogonal transformation
on r precisely corresponds to inserting an n-mode passive
linear interferometer before performing the n homodyne
measurements.

In classical probability theory, distributions that are
invariant under orthogonal transformations are referred
to as orthogonally invariant distributions. It has long
been known that such probability distributions tend to
mixtures of i.i.d. Gaussian distributions in the limit
n → ∞, or, more formally, that the first k coordi-
nates of a random point that is uniformly distributed
on the n-dimensional sphere are asymptotically normal.
(An historical perspective of this property, going back to
Poincar, Borel, and Maxwell, can be found in Ref. [12],
where the authors also derive a sharp bound for the the-
orem). In what follows, we consider the natural quantum
counterpart of these distributions, namely n-mode states
ρ for which the probability distribution p(r1, · · · , rn)
that results from measuring n quadratures of ρ is un-
affected by an n-mode passive interferometer preceding
the measurement. This is equivalent to the condition
that the state ρ is itself invariant under passive symplec-
tic transformations, or, more physically, that ρ remains
unchanged after being processed via any n-mode passive
linear interferometer. In what follows, we will refer to
these states as orthogonally invariant in phase space.

This orthogonal invariance in phase space clearly en-
compasses the permutation invariance in state space since
permuting the coordinates in phase space is just a spe-
cial case of an orthogonal transformation. Since we are
considering a continuous instead of a discrete symme-
try group, this invariance in phase space might appear
quite restrictive, and we may question whether there ex-
ist interesting orthogonally invariant states. This is for-
tunately the case as, for example, any multimode ther-
mal state is orthogonally invariant. This can be readily
checked by considering its Wigner function which is given
by a 2n-partite Gaussian distribution with variance σ2,

Wth(x1, p1, · · · , xn, pn) =
1

(2πσ2)n/2

× e−(x2

1
+p2

1
+···+x2

n+p2

n)/2σ2

(2)

which is clearly invariant under orthogonal transforma-
tions of the coordinates. Note that such a multimode
thermal state is nothing but a product of identical ther-
mal states, which, in fact, plays the same role for the in-
variance under orthogonal transformations as i.i.d. states
for the usual invariance under permutations. Another
class of orthogonally invariant states is, for example, the
multimode extension of Fock states that we will consider
in the following.

Let us now give two alternative characterizations of
the set of orthogonally invariant states. The most natural
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one relies on phase space representation, since this is how
the symmetry is expressed. In order to be invariant under
orthogonal transformations in phase space, these states
must simply have a Wigner function that only depends on
one single parameter, namely the modulus ||r|| = (x2

1 +
p2
1 + · · · + x2

n + p2
n)1/2. The characterization of this set

of states in the Fock state representation is slightly more
involved. We note that this set is convex as any mixture
of orthogonally invariant states remains invariant under
orthogonal transformations. It is, therefore, completely
characterized by its extremal points, which can be shown
to be the states

σn
p =

1

an
p

∑

p1···pn

s.t.
P

i
pi=p

|p1 · · · pn〉〈p1 · · · pn| (3)

with an
p =

(

n+p−1
n−1

)

. These extremal states are the

multimode generalization of number states |p〉, that is,
they correspond to the (normalized) projectors onto the
various eigenspaces of the total number operator n̂ =
n̂1 + . . . + n̂n. For instance, σn

p , which is proportional
to the projector onto the eigenspace of n̂ with eigenvalue
p, physically corresponds to a state with p photons dis-
tributed over n modes. The normalization factor an

p sim-
ply coincides with the number of ways of distributing p
photons over n modes. These extremal states σn

p form a
discrete infinite set of mixed states parametrized by p (or
pure states for n = 1 as σ1

p = |p〉〈p|). Importantly, any
pure eigenstate chosen in the eigenspace corresponding
to a given total photon number p is generally not or-
thogonally invariant; only the uniform mixture of them
fulfills this invariance (Schur’s lemma), which is why the
extremal states σn

p are mixed for n > 1.

III. A QUANTUM DE FINETTI THEOREM

FOR ORTHOGONALLY INVARIANT STATES

As mentioned above, a classical de Finetti’s theorem
exists for classical orthogonally invariant probability dis-
tributions. The theorem states that, in the limit of in-
finite sequences X1, · · · , Xn with n → ∞, the first k
variables are exactly mixtures of i.i.d. Gaussian distri-
butions. This result only holds approximately for fi-
nite sequences [12]: if the distribution of X1, · · · , Xn

is invariant under orthogonal transformations in R
n,

then the marginal distribution of the first k coordinates
X1, · · · , Xk is close to a mixture of i.i.d. Gaussian distri-
butions. Here, the “closeness” is measured in the sense
that the variation distance is bounded from above by
2(k + 3)/(n − k − 3) for 1 ≤ k ≤ n − 3.

Let us now formulate our main result, which is the
quantum counterpart of the previous result.

Theorem 1. If ρn is a n-mode orthogonally invariant

quantum state, its partial trace over any (n − k) modes

trn−k(ρn) can be approximated in the sense of the trace-

norm distance by a mixture of k-mode thermal states

ρk
th

(x), that is,

||trn−k(ρn) −
∫

ρk
th(x)µ(dx)||1

≤ 2

(

n2

(n − k − 1)(n − k − 2)
− 1

)

where ρk
th

(x) is the tensor product of k thermal states

with a mean number of x photons per mode, and µ is a

probability measure.

The idea of our proof is inspired from that of the clas-
sical version of the theorem for geometric probability dis-
tributions, as described in [12]. If X1, · · · , Xn are inte-
ger classical random variables whose joint distribution
is invariant under transformations that keep the sum
X1 + · · · + Xn constant, then the marginal law of the
first k coordinates X1, · · · , Xk is close, in the sense of
the variation distance, to a mixture of i.i.d. geometric
distributions. The link with our quantum problem comes
from the fact that in the Fock basis, any passive linear in-
terferometer redistributes the photons among the modes
in such a way that the total photon number is kept con-
stant, since the energy is conserved. The invariance un-
der orthogonal transformations in phase space therefore
translates into the invariance under transformations that
keep the total photon number constant in the Fock basis.
As a consequence, the asymptotic state in our theorem
is characterized by a geometric distribution in the Fock
basis, which precisely is the signature of a thermal state.
Our proof will thus consist in bounding the convergence
of an n-mode state that is invariant under a redistribu-
tion of photons among the n modes (with a constant total
photon number) towards a mixture of thermal states.

Proof. We start from the fact that any n−mode orthog-
onally invariant state ρn can be written as a convex mix-
ture of the multimode number states σn

p as defined in
Eq. (3), namely

ρn =

∞
∑

p=0

cp σn
p (4)

with arbitrary weights cp satisfying 0 ≤ cp ≤ 1 and
∑

p cp = 1. Now, using the convexity of the trace-norm
distance

||trn−k(ρn) −
∫

ρk
th(x)µ(dx)||1

≤
∞
∑

p=0

cp ||trn−k(σn
p ) −

∫

ρk
th(x)µ(dx)||1, (5)

we see that it is sufficient to prove the theorem for the
extremal states σn

p , that is, it is enough to prove

||trn−k(σn
p ) − ρk

th(p/n)||1 ≤

2

(

n2

(n − k − 1)(n − k − 2)
− 1

)

, (6)
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for any p. Note that we have arbitrarily reduced the
mixture of thermal states to one single term, which is
natural since we start with an extremal state σn

p . Note
also that we have taken x = p/n for this single term, that
is, we characterize the convergence of the reduced state
towards a k-mode thermal state with a mean number of
p/n photons per mode.

The reduced state trn−k(σn
p ) is obviously orthogonally

invariant in the remaining space of k modes, which im-
plies that it can be written as a mixture of k-mode num-
ber states,

trn−k(σn
p ) =

p
∑

l=0

f(l)σk
l (7)

where a simple combinatorial argument shows that:

f(l) =
ak

l an−k
p−l

an
p

. (8)

The k-mode thermal state ρk
th(x) is defined as the prod-

uct of k single-mode thermal states with x photons per
mode, namely ρk

th(x) = ρth(x)⊗k with

ρth(x) =

∞
∑

l=0

xl

(1 + x)l+1
|l〉〈l| (9)

A straightforward calculation shows that it can be writ-
ten as a mixture of k-mode number states

ρk
th(x) =

∞
∑

l=0

g(l)σk
l , (10)

with

g(l) = ak
l

xl

(1 + x)l+k
(11)

which confirms that it is also orthogonally invariant.
We now prove Eq. (6) using the fact that both

trn−k(σn
p ) and ρk

th(x) are diagonal in basis of k-mode
number states. This implies that their trace-norm dis-
tance is given by the variation distance between the clas-
sical probability distributions f and g, that is

||trn−k(σn
p ) − ρk

th(p/n)||1 =

∞
∑

l=0

|f(l) − g(l)|

= 2
∞
∑

l=0

(

f(l)

g(l)
− 1

)+

g(l)

≤ 2

(

sup
l

f(l)

g(l)
− 1

)

(12)

where the function (x)+ is equal to x if x ≥ 0 and van-
ishes otherwise. Using the notation

h(l) ≡ f(l)

g(l)
=

an−k
p−l (1 + p/n)l+k

an
p (p/n)l

, (13)

the rest of the proof consists in upper bounding the supre-
mum of h(l) as tightly as possible. Expanding the bino-

mials in an−k
p−l and an

p , the function h(l) can be rewritten
as:

h(l) =
(n − 1)!

nk (n − k − 1)!
× (p − 1)!

pl−1 (p − l)!
(14)

× (n + p)k+l (n + p − k − l − 1)!

(n + p − 1)!

=

∏k
t=1(1 − t

n )
∏l−1

t=1(1 − t
p )

∏k+l
t=1(1 − t

n+p )
(15)

The logarithm of h(l) can be expressed as

log h(l) = −S(n, k)− S(p, l − 1) + S(n + p, k + l), (16)

where S(n, k) is defined as

S(n, k) ≡ −
k

∑

t=0

log

(

1 − t

n

)

. (17)

The function x 7→ − log(1 − x) being monotonically in-
creasing on [0, 1[, one has

n J

(

k

n

)

≤ S(n, k) ≤ n J

(

k + 1

n

)

(18)

where

J(x) ≡ −
∫ x

0

log(1 − t) dt

= x + (1 − x) log(1 − x). (19)

Let us introduce the two reduced variables u = k/n and
v = l/p, which both belong to the interval [0, 1[. Since
the function J(x) is convex on [0, 1[, we have

J(α u + (1 − α) v) ≤ αJ(u) + (1 − α)J(v) (20)

where 0 ≤ α ≤ 1. If we choose α = n/(n + p), this
equation translates into

(n + p)J

(

k + l

n + p

)

≤ n J

(

k

n

)

+ p J

(

l

p

)

(21)

By using Eq. (18), we can lower (upper) bound the left-
(right-) hand side term of Eq. (21), which yields

S(n + p, k + l − 1) ≤ S(n, k) + S(p, l) (22)

Substituting k with k + 2 and l with l − 1, we get the
equivalent inequality

S(n + p, k + l) ≤ S(n, k + 2) + S(p, l − 1) (23)

which can be used to upper bound the quantity of interest
obtained in Eq. (16), namely

log h(l) ≤ S(n, k + 2) − S(n, k) (24)

We conclude that

h(l) ≤ n2

(n − k − 1)(n − k − 2)
(25)

which, using Eq. (12), concludes the proof of our theo-
rem.
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IV. CONCLUSION

We have investigated a new type of symmetry in the
context of quantum de Finetti’s theorems, namely the in-
variance under orthogonal transformations in phase space
representation. This approach seems to be particularly
relevant to study the properties of continuous-variable
systems, going beyond the standard approach that was
based on permutation invariance in state space represen-
tation. Just like orthogonally invariant n-partite proba-
bility distributions are known to tend to i.i.d. Gaussian
distributions, we have shown that orthogonally invariant
n-mode states tend to i.i.d. thermal states. More pre-
cisely, we have derived a finite version of a quantum de
Finetti’s theorem for this class of states, which puts an
upper bound on the distance between the partial trace of
orthogonally invariant states and mixtures of multimode
thermal states. Physically, the invariance under orthog-
onal transformations in phase space corresponds to the
fact that the state is unchanged by a passive linear inter-
ferometer. Since this operation amounts to redistributing
photons while keeping their number constant, our quan-
tum de Finetti’s theorem is connected to the classical de
Finetti’s theorem for geometric distributions where geo-
metric distributions (thermal states) play a special role.

Let us conclude by suggesting two potentially inter-
esting extensions of this de Finetti theorem, which arise
in the context of continuous-variable quantum key dis-
tribution [13]. First, it would be nice to generalize our

results to bipartite states, i.e., states ρAB that are in-
variant under (conjugate) orthogonal transformations ap-
plied to systems A and B, respectively. As we explained
in Ref. [11], the legitimate parties (Alice and Bob) can
always enforce such a symmetry in phase space. Their
global state ρAB can therefore be assumed to be a bipar-
tite orthogonally invariant state in phase space. In other
words, ρAB is invariant if both parts ρA = trB ρAB and
ρB = trA ρAB are processed via (conjugate) passive lin-
ear interferometers. Note that the resulting local states
held by each party, ρA and ρB, are then another example
of orthogonally invariant states. The second question one
might want to answer is whether the de Finetti theorem
presented here has an exponential version in analogy to
Ref. [3], that is, such that only a small number of modes
needs to be traced out in order to get a reduced state
that is well approximated by (almost) a mixture of ther-
mal states.
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