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A NONCOMMUTATIVE EXTENDED DE FINETTI THEOREM

CLAUS KÖSTLER

Abstract. The extended de Finetti theorem characterizes exchangeable in-
finite random sequences as conditionally i.i.d. and shows that the apparently
weaker distributional symmetry of spreadability is equivalent to exchangeabil-
ity. Our main result is a noncommutative version of this theorem.

In contrast to the classical result of Ryll-Nadzewski [RN57], exchangeabil-
ity turns out to be stronger than spreadability for infinite noncommutative
random sequences. Out of our investigations emerges noncommutative con-
ditional independence in terms of a von Neumann algebraic structure closely
related to Popa’s notion of commuting squares [Pop83b] and Kümmerer’s gen-
eralized Bernoulli shifts [Küm88b]. Our main result is applicable to classical
probability, quantum probability, in particular free probability [VDN92], braid
group representations and Jones subfactors [GHJ89, GK08].
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Introduction and main result

The characterization of random objects with distributional symmetries is of
major interest in modern probability theory and Kallenberg’s recent monograph
[Kal05] provides an impressive account on this subject. Already in the early
1930s, de Finetti showed that infinite exchangeable random sequences are con-
ditionally i.i.d. or, more intuitively formulated, mixtures of i.i.d. random vari-
ables [Fin31, CR96]. An early version of his celebrated characterization is that
for every infinite sequence of exchangeable {0, 1}-valued random variables X ≡
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2 C. KÖSTLER

(X1, X2, X3, . . .), there exists a probability measure ν on [0, 1] such that the law
L(X) is given by

L(X) =

∫

[0,1]

m(p)dν(p).

Here m(p) denotes the infinite product of the measure with Bernoulli distribution
(p, 1 − p). An extension of this result from the set {0, 1} to any compact Haus-
dorff space Ω goes back to Hewitt and Savage [HS55] and soon after it was realized
by Ryll-Nadzewski [RN57] that the apparently weaker distributional symmetry of
spreadability is equivalent to exchangeability for infinite random sequences. A fur-
ther extension to standard Borel spaces is provided by Aldous in his monograph
on exchangeability [Ald85]. Let us mention that ‘spreadability’ is also known as
‘contractability’ in the probability theory and shares common ground with ‘sub-
symmetric sequences’ in Banach space theory.

Our main result is a noncommutative version of the following extended de Finetti
theorem. We have adapted its formulation in [Kal05, Theorem 1.1] to the purposes
of this paper:

Theorem 0.1. Let X ≡ (Xn)n∈N : (Ω,Σ, µ) → (Ω0,Σ0) be a sequence of random
variables, where (Ω,Σ) and (Ω0,Σ0) are standard Borel spaces and µ is a probability
measure. Then the following conditions are equivalent:

(a) X is exchangeable;
(b) X is spreadable;
(c) X is conditionally i.i.d.

Here the conditioning is with respect to the tail σ-field of the random sequence
X . Three different proofs of this result can be found in [Kal05] and it is worthwhile
to point out that the two implications (a) ⇒ (b) and (c) ⇒ (a) are fairly clear; the
main work rests on proving the implication (b) ⇒ (c).

An early noncommutative version of de Finetti’s theorem was given by Størmer
for exchangeable states on the infinite tensor product of C*-algebras [Stø69]. His
pioneering work stimulated further results in quantum statistical physics and quan-
tum probability, with focus on bosonic systems [HM76, Hud81, FLV88]. A quite
general noncommutative analogue of de Finetti’s theorem is obtained by Accardi
and Lu in a C*-algebraic setting, where only the tail algebra (generated by the
exchangeable infinite noncommutative random sequence) is required to be com-
mutative [AL93]. Quite recently, inspired by Good’s formula and Speicher’s free
cumulants [Spe98], a combinatorial approach by Lehner unifies cumulant techniques
in a *-algebraic setting of exchangeability systems [Leh04, Leh03, Leh05, Leh06].
He shows that exchangeability entails properties of cumulants, as they are known in
classical probability to be characterizing for (conditional) independence. Presently,
no results on noncommutative versions of de Finetti’s theorem seem to be available
in the literature beyond the case of commutative tail algebras and Lehner’s combi-
natorial results for exchangeability systems; and no results at all are present in the
noncommutative realm for the extended de Finetti theorem, Theorem 0.1.

Our framework towards a noncommutative version of the extended de Finetti
theorem needs to be capable to efficiently handle tail events. This suggests to
deal right from the beginning with W*-algebraic probability spaces. We will work
with noncommutative probability spaces (M, ψ) which consist of a von Neumann
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algebra M (with separable predual) and a faithful normal state ψ on M. A non-
commutative random variable ι from (A0, ϕ0) to (M, ψ) is given by an injective
*-homomorphism ι : A0 → M such that ϕ0 = ψ ◦ ι. Furthermore, we require that
the ψ-preserving conditional expectation from M onto ι(A0) exists (see Section 1
for further details).

Here we will constrain our investigations to a random sequence I , given by
an infinite sequence of identically distributed random variables ι ≡ (ιn)n∈N0 from
(A0, ϕ0) to (M, ψ). This simplification improves the transparency of our approach,
since it allows us to realize ι as injective mappings from the single probability
space (A0, ϕ0). A treatment beyond identically distributed random variables is
possible and of course of interest; it would start with a probability space (M, ψ)
and a sequence of (not necessarily injective) normal *-homomorphisms from a von
Neumann algebra A into M. Since the distributional symmetries considered herein
will lead anyway to stationarity (which implies identical distributions), we omit
this primary technical generalization.

We recall that M is of the form L∞(Ω,Σ, µ) for some standard Borel space
(Ω,Σ, µ) as soon as M is commutative; and then one has ψ =

∫
Ω
· dµ. In this case a

random variableX : (Ω,Σ, µ) → (Ω0,Σ0) reappears as an injective *-homomorphism
ι : L∞(Ω0,Σ0, µX) → L∞(Ω,Σ, µ) with ι(f) := f ◦X (the measure µX is the dis-
tribution of X). Given a sequence of random variables (Xn)n∈N0 , the constraint of
identically distributed Xn’s ensures that we can identify all image measures µXn

with the single measure µX0 . Note that this approach is free of any conditions on
the existence of moments of the Xn’s.

Throughout we will work with a noncommutative notion of conditional indepen-
dence which, by our main result, can actually seen to emerge out of the transfer
of the extended de Finetti theorem to noncommutative probability. It encom-
passes Popa’s notion of ‘commuting squares’ in subfactor theory [Pop83b, GHJ89]
as well as Voiculescu’s freeness with amalgamation [VDN92], aside of tensor in-
dependence and many other examples coming from generalized Gaussian random
variables [BKS97, GM02].

Consider the random sequence I which generates the von Neumann subalgebras

MI :=
∨

i∈I

ιi(A0)

for subsets I ⊂ N0 and the tail algebra

Mtail :=
⋂

n∈N0

∨

k≥n

ιk(A0).

Let EMtail denote the ψ-preserving conditional expectation from M onto Mtail.
Then we say that I is full Mtail-independent if

EMtail(xy) = EMtail(x)EMtail (y)

for all x ∈ Mtail ∨ MI and y ∈ Mtail ∨ MJ with I ∩ J = ∅. We will also meet
a weaker notion of independence, called order Mtail-independence, which requires
the (ordered) sets I and J to satisfy I < J or I > J , instead of disjointness.

These two notions of conditional independence do not require Mtail ⊂ MI and
allow a noncommutative dual formulation of random measures as they are neces-
sary in the context of de Finetti’s theorem. Interesting on its own, the paradigm



4 C. KÖSTLER

of an infinite sequence X of exchangeable {0, 1}-valued random variables clearly il-
lustrates that, in its algebraic reformulation, stipulating the inclusion Mtail ⊂ MI

implies the triviality Mtail ≃ C and thus forces X to be i.i.d. Thus it is crucial
to allow Mtail 6⊂ MI if one is interested in transferring results on distributional
symmetries to a noncommutative setting.

In order to state our main result, we informally introduce the relevant distri-
butional symmetries. Given the two random sequences I and Ĩ with random
variables ι resp. ι̃, both from (A0, ϕ0) to (M, ψ), we write

(ι0, ι1, ι2, . . .)
distr
= (ι̃0, ι̃1, ι̃2, . . .)

if I and Ĩ have the same distribution:

ψ
(
ιi(1)(a1)ιi(2)(a2) · · · ιi(n)(an)

)
= ψ

(
ι̃i(1)(a1)ι̃i(2)(a2) · · · ι̃i(n)(an)

)

for all n-tuples i : {1, 2, . . . , n} → N0, (a1, . . . , an) ∈ An
0 and n ∈ N. Now a ran-

dom sequence I is said to be exchangeable if its distribution is invariant under
permutations:

(ι0, ι1, ι2, . . .)
distr
= (ιπ(0), ιπ(1), ιπ(2), . . .)

for any finite permutation π ∈ S∞ of N0. We say that random sequence I is
spreadable if every subsequence has the same distribution:

(ι0, ι1, ι2, . . .)
distr
= (ιn0 , ιn1 , ιn2 , . . .)

for any subsequence (n0, n1, n2, . . .) of (0, 1, 2, . . .). Finally, I is stationary if the
distribution is shift-invariant:

(ι0, ι1, ι2, . . .)
distr
= (ιk, ιk+1, ιk+2, . . .)

for all k ∈ N.
We are ready to formulate our main result, a noncommutative dual version of

Theorem 0.1.

Theorem 0.2. Let I be a random sequence with (identically distributed) random
variables

ι ≡ (ιi)i∈N0 : (A0, ϕ0) → (M, ψ)

and consider the following conditions:

(a) I is exchangeable;
(b) I is spreadable;
(c) I is stationary and full Mtail-independent;
(d) I is full Mtail-independent;

(co) I is stationary and order Mtail-independent;
(do) I is order Mtail-independent.

Then we have the implications:

(a) ⇒ (b) ⇒ (c) ⇒ (d)
⇓ ⇓

(co) ⇒ (do)

Moreover, there are examples such that (a) 6⇐ (b) 6⇐ (c) 6⇐ (d) and (co) 6⇐ (do).

Similar to the classical case, the hard part of the proof is that spreadability
implies conditional full independence. This is done by means from noncommutative
ergodic theory.
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One might object that a noncommutative version of the extended de Finetti
theorem should provide an equivalence of these conditions. But our investigations
show that such a common folklore understanding would be conceptually misleading
in the noncommutative world. The crucial implications from distributional sym-
metries to conditional (full/order) independence are still valid. All listed converse
implications fail due to deep structural reasons, and the others are presently open
in the generality of our setting.

The failure of the implication ‘(b) ⇒ (a)’ relies on the fact that, in the non-
commutative realm, spreadability of infinite random sequences goes beyond the
representation theory of the symmetric group. As developed in [GK08], braid
group representations with infinitely many generators lead to braidability, a new
symmetry intermediate to exchangeability and spreadability. This braidability ex-
tends exchangeability and provides a rich source of spreadable noncommutative
random sequences such that the reverse implication ‘(b) ⇒ (a)’ fails. Some of these
‘counter-examples’ are known in subfactor theory as vertex models from quantum
statistical physics. The inequivalence of exchangeability and spreadability is a fa-
miliar phenomena for random arrays [Kal05]. Since this phenomena already occurs
for infinite sequences in the noncommutative setting, it provides another facet of
the common folklore result that (d+ 1)-dimensional classical models correspond to
d-dimensional quantum models [EK98].

Examples for the failure of the implication ‘(c) ⇒ (b)’ are also available in the
context of braid group representations. It is shown in [GK08] that an appropriate
cocycle perturbation of the unilateral shift of a stationary random sequence may
obstruct spreadability without effecting the structure of conditional full indepen-
dence. Again, related ‘counter-examples’ arise in the most natural manner. For
example, the symbolic shift on the Artin generators of the braid group B∞ induces
an endomorphism of the braid group von Neumann algebra L(B∞) such that, when
acting on the subalgebra L(B2), the resulting stationary random sequence exhibits
the failure of ‘(c) ⇒ (b)’. Such phenomena are impossible in the classical case by
Theorem 0.1.

Finally, one can not expect in the noncommutative realm that i.i.d. random se-
quences are automatically stationary. The failure of the implication ‘(d) ⇒ (c)’,
and thus of ‘(do) ⇒ (co)’, is closely related to the fact that our notion of noncom-
mutative conditional independence is more general than (conditioned versions of)
tensor independence or free independence. The latter two notions of independence
enjoy universality properties [Spe97, BGS02, NS06] which immediately entail sta-
tionarity of an i.i.d. random sequence. In particular, they are rigid with respect
to certain ‘local perturbations’ of noncommutative random sequences. But we will
see that, starting with a stationary (conditionally full/order) independent random
sequence, our more general notion of independence is non-rigid with respect to such
‘local perturbations’. Related examples arise again in the context of braid group
representations or noncommutative Gaussian random variables. Thus stationarity
plays are more distinguished role in the quantum setting and cannot simply be
deduced from independence properties as it is the case for classical probability or
Voiculescu’s free probability.

A closer look at Theorem 0.2 reveals that it is ‘dual’ to the usual formulations
of de Finetti’s theorem. In terms of quantum physics, our theorem is formulated in
the Heisenberg picture, whereas the usual formulations use the Schrödinger picture.



6 C. KÖSTLER

Or equivalently phrased: our result is on the level of the von Neumann algebra,
whereas the latter identify the geometry of exchangeable states in the predual of
the von Neumann algebra. Using the theory of noncommutative L1-spaces it would
be of interest to examine in detail the geometry of exchangeable, spreadable or
‘conditionally independent’ subspaces.

We summarize the content of this paper.
Section 1 introduces our setting of noncommutative probability spaces, random

sequences and distributional symmetries. It closes with the proof of some of the
elementary implications of Theorem 0.2.

Section 2 provides the needed background results on noncommutative stationary
processes and their endomorphisms. Since spreadability immediately implies sta-
tionarity, most parts of the proof of Theorem 0.2 will be carried out in an equivalent
framework of stationary processes.

We introduce in Section 3 two noncommutative versions of classical conditional
independence, called ‘conditional independence’ (CI) and ‘conditional factorizabil-
ity’ (CF). Both notions are equivalent if the conditioning is trivial or appropriate
additional algebraic structure is supposed. But (CF) is a priori weaker than (CI)
and more easily to control in applications. Their definition reflects that the condi-
tioning is with respect to a von Neumann algebra which may not be contained in
the image of two random variables. Further we relate ‘conditional independence’
to Popa’s ‘commuting squares’ of von Neumann algebras.

The main result of Section 4 is that (CI) and (CF) are equivalent for a stationary
random sequence if the conditioning is with respect to a subalgebra of the fixed
point algebra of the corresponding endomorphism, see Theorem 4.2. Moreover, we
introduce the notions of ‘conditional order independence’ (CIo) and ‘conditional
order factorizability’ (CFo). These two notions are apparently weaker and reflect
that the index set N0 of the random sequence is considered as an ordered set.
Already (CFo), the weakest of the four properties, will suffice to establish mixing
properties of stationary processes. Finally, we illustrate (CI) and (CF) by the
algebraic reformulation of de Finetti’s original example, an infinite sequence of
exchangeable {0, 1}-valued random variables.

Section 5 focuses on appropriate ‘local perturbations’ of C-independent station-
ary random sequences. Our main result is that a noncommutative i.i.d. random
sequence may be non-stationary. We provide related examples and disprove the
implications ‘(d) ⇒ (c)’ and ‘(do) ⇒ (co)’ of Theorem 0.2.

Section 6 provides a noncommutative generalization of Kolmogorov’s zero-one-
law for a random sequence with (CFo). Further we show in Theorem 6.4 that
(CFo) and stationarity imply strong mixing over the tail algebra and fixed point
characterization results. We coin in this section also the notion of a noncommutative
Bernoulli shift, as it is suggested by our results on distributional symmetries and
inspired by Kümmerer’s notion of a generalized Bernoulli shift. These shifts can
be recognized as the unilateral ‘discrete’ version of noncommutative continuous
Bernoulli shifts from [HKK04].

Section 7 is devoted to an integral part of the noncommutative extended de
Finetti theorem, the proof that spreadability of a random sequence yields condi-
tional order independence (CIo). Here the conditioning is shown to be with respect
to the tail algebra of the random sequence.
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Section 8 upgrades the results of the previous section. Our main result is Theo-
rem 8.1 which provides the proof of the crucial part of Theorem 0.2: spreadability
implies conditional full independence (CI) of a random sequence. An important tool
within its proof is a local version of the mean ergodic theorem, Theorem 8.4. It
will allow us to perform mean ergodic approximations in a spreadability preserving
manner.

Applications and an outview are contained in Section 9. We cite results from
[GK08] on braidability and on the failure of the implications ‘(a) ⇐ (b)’ and ‘(b)
⇐ (c)’ of the noncommutative extended de Finetti theorem, Theorem 0.2. More-
over, we present a general central limit theorem for spreadable random sequences
which can be regarded to be the noncommutative prototype of a conditioned central
limit theorem. We also discuss briefly its potential connections to interacting Fock
spaces. Finally, we give immediate applications of Theorem 0.2 to inequalities in
noncommutative L1-spaces, as they appear in the work of Junge and Xu.

Acknowledgments. The present paper took its origin from work with Rolf Gohm
on one of the most simple examples coming from the Jones fundamental construc-
tion [GK08], and joint work with Roland Speicher on the structure of noncom-
mutative white noises [KS07]. At both occasions we found ‘spreadability’ without
being aware of it. We are indebted to Marius Junge and Wojciech Jaworski who
independently pointed out possible connections to distributional symmetries and
initiated the author’s investigations resulting in the present paper. We are thankful
to several helpful discussions with Benoit Collins, Rolf Gohm, Marius Junge, James
Mingo and Roland Speicher in the course of writing this paper.

1. Preliminaries and Terminology

Noncommutative notions of probability spaces have in common that they consist
of an algebra which is equipped with a linear functional. Here we shall work with
the W*-algebraic version of such spaces, since they allow us to capture probabilistic
tail events of random sequences. We refer the reader to [AFL82, Küm85, KM98,
VDN92, NS06] for further information on noncommutative probability spaces, in
particular *-algebraic or C*-algebraic settings.

Definition 1.1. A probability space (M, ψ) consists of a von Neumann subalgebra
M with separable predual and a faithful normal state ψ on M. A von Neumann
algebra M0 of M is said to be ψ-conditioned if the ψ-preserving conditional ex-
pectation EM0 from M onto M0 exists. Two probability spaces (M1, ψ1) and
(M2, ψ2) are said to be isomorphic if there exists an isomorphism Π: M1 → M2

such that ψ1 = ψ2 ◦ Π. The ψ-preserving automorphisms of M will be denoted by
Aut(M, ψ).

By Takesaki’s theorem, the ψ-preserving conditional expectation EM0 exists if

and only if σψt (M0) = M0 for all t ∈ R [Tak03, IX, Theorem 4.2]. Here σψt denotes
the modular automorphism group associated to (M, ψ). Thus the existence of such
a conditional expectation is automatic if ψ is a trace, i.e. ψ(xy) = ψ(yx) for all
x, y ∈ M.

The noncommutative generalization of random variables is casted in terms of
*-homomorphisms [AFL82]. For the purpose of this paper the following definition
of a random variable will be sufficient.
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Definition 1.2. Let (A0, ϕ0) and (M, ψ) be two probability spaces. A random
variable is an injective *-homomorphism ι : A0 → M satisfying two additional
properties:

(i) ϕ0 = ψ ◦ ι;
(ii) ι(A0) is ψ-conditioned.

A random variable will also be addressed as the mapping ι : (A0, ϕ0) → (M, ψ).

Every classical random variable in the context of standard measure spaces yields
by algebraisation a random variable in the sense of Definition 1.2. Conversely, if
the von Neumann algebra M is commutative then the usual notion of a random
variable on standard probability spaces can be recovered from Definition 1.2. Note
that our assumption of injectivity is no restriction if a single random variable is
considered.

Remark 1.3. Assertion (ii) in above definition is superfluous if ψ is a trace. Note
also that this assertion has equivalent formulations:

(iii) ι intertwines the modular automorphism groups of (A0, ϕ0) and (M, ψ);
(iv) There exists a (unique) unital completely positive map ι+ : M → A0 sat-

isfying ψ(xι(a)) = ϕ0(ι
+(x)a) for all x ∈ M and a ∈ A0.

The map ι+ is also called the adjoint of ι. We refer the reader to [AC82, GK82,
HKK04, AD06] for further details and background results on the equivalences of
(ii) to (iv).

Remark 1.4. Commonly (selfadjoint) operators in the von Neumann algebra M
(or, more generally, its noncommutative Lp-spaces) are also denoted as ‘noncom-
mutative random variables’ in the literature. Such approaches require assumptions
on the existence of higher moments of a random variable. The framework of injec-
tive *-homomorphisms has the advantage that it is free of any assumptions on the
existence of moments. Of course, we can easily produce a random variable in the
operator sense from our setting by considering ι(x) for some fixed x ∈ A0.

We are interested in sequences of random variables.

Notation 1.5. We write I < J for two subsets I, J ⊂ N0 if i < j for all i ∈ I and
j ∈ J . The cardinality of I is denoted by |I|. For N ∈ N, we denote by I +N the
shifted set {i+N | i ∈ I}.
Definition 1.6. An (identically distributed) random sequence I is a sequence of
random variables

ι ≡ (ιi)i∈N0 : (A0, ϕ0) → (M, ψ).

The family (AI)I⊂N0 , with von Neumann subalgebras

AI =
∨

i∈I

ιi(A0),

is called the canonical filtration (generated by I ) and I is said to be minimal if
AN0 = M. The von Neumann subalgebra

Atail :=
⋂

n∈N0

∨

k≥n

ιk(A0)

is called the tail algebra of I .



NONCOMMUTATIVE EXTENDED DE FINETTI THEOREM 9

Suppose a second random sequence Ĩ is defined by the random variables ι̃ ≡
(ι̃i)i∈N0 : (A0, ϕ0) → (M̃, ψ̃). Then I and Ĩ are isomorphic if there exists an

isomorphism Π: M̃ → M such that ψ ◦ Π = ψ̃ and Π ◦ ι̃n = ιn for all n ∈ N0.

Whenever it is convenient, we may turn a random sequence into a minimal one
by restricting the probability space (M, ψ) to (AN0 , ψ|AN0

). We have already in-
troduced distributional symmetries in the introduction. Here we present equivalent
definitions which are less intuitive, but more convenient within our proofs.

Notation 1.7. The group S∞ is the inductive limit of the symmetric groups Sn,
n ≥ 2, where Sn is generated on N0 by the transpositions

πi : (i− 1, i) → (i, i− 1)

with 1 ≤ i < n. By [n] we denote the linearly ordered set {1, 2, . . . , n}.
Definition 1.8. Let i, j : [n] → N0 be two n-tuples.

(i) i and j are translation equivalent, in symbols: i ∼θ j, if there exists k ∈ N0

such that
i = θk ◦ j or θk ◦ i = j.

Here denotes θ the right translation m 7→ m+ 1 on N0.
(ii) i and j are order equivalent, in symbols: i ∼o j, if there exists a permutation

π ∈ S∞ such that

i = π ◦ j and π|j([n]) is order preserving.

(iii) i and j are symmetric equivalent, in symbols: i ∼π j, if there exists a
permutation π ∈ S∞ such that

i = π ◦ j.

We have the implications (i ∼θ j) ⇒ (i ∼o j) ⇒ (i ∼π j).

Remark 1.9. Order equivalence of two n-tuples i and j can also be expressed with
the help of the partial shifts (θN )N≥0 : N0 → N0, where

θN (n) =

{
n if n < N ;

n+ 1 if n ≥ N.

Each θN is order-preserving and it is easy to see that i ∼o j if and only if there
exist partial shifts θN1 , θN2 , . . . , θNk

such that θN1 ◦ θN2 ◦ · · · ◦ θNk
◦ i = j. Note also

that any subsequence (n0, n1, n2, · · · ) of the infinite sequence (0, 1, 2, 3, . . .) can be
approximated via actions of the subshifts (θN )N≥0.

Remark 1.10. Order equivalence is used in the context of a general limit theorem
in [KS07] and our present formulation is an equivalent one.

For the notation of mixed higher moments of random variables, it is convenient
to use Speicher’s notation of multilinear maps.

Notation 1.11. Let the random sequence I be given by

ι ≡ (ιi)i∈N0 : (A0, ϕ0) → (M, ψ).

We put, for i : [n] → N0, a = (a1, . . . , an) ∈ An
0 and n ∈ N,

ι[i;a] := ιi(1)(a1)ιi(2)(a2) · · · ιi(n)(an),

ψι[i;a] := ψ
(
ι[i;a]

)
.
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We are ready to introduce distributional symmetries in terms of the mixed mo-
ments of a random sequence.

Definition 1.12. A random sequence I is

(i) exchangeable if, for any n ∈ N,

ψι[i; · ] = ψι[j; · ] whenever i ∼π j;

(ii) spreadable if, for any n ∈ N,

ψι[i; · ] = ψι[j; · ] whenever i ∼o j;

(iii) stationary if, for any n ∈ N,

ψι[i; · ] = ψι[j; · ] whenever i ∼θ j.

We close this section with the proof of the obvious implications in the noncom-
mutative extended de Finetti theorem.

Proof of Theorem 0.2, elementary parts. It is evident from Definition 1.8 and Defi-
nition 1.12 that exchangeability implies spreadability, and that spreadability implies
stationarity. This shows the implication ‘(a) ⇒ (b)’ and the elementary parts on
stationarity of the implications ‘(b) ⇒ (c)’ and ‘(b) ⇒ (c0)’. The implications ‘(c)
⇒ (d)’ and ‘(c0) ⇒ (d0)’ are trivial. �

2. Noncommutative stationary processes

Exchangeable or spreadable random sequences are stationary and can thus be
expressed as stationary processes. Since the remaining sections of this paper will
rest on this well known connection, we provide more in detail some of their specific
properties in this section. We will introduce stationary processes such that they are
in a canonical correspondence to stationary random sequences (see Definition 1.12).
Their notion is very closely related to Kümmerer’s approach in [Küm93, Küm03]
(see also [Goh04, Section 2.1]). Moreover, we present a result from [Küm88a] which
shows that a unilateral stationary process (as introduced next) extends to a bilateral
stationary process.

Definition 2.1. A (unilateral) stationary process M consists of a probability space
(M, ψ), a ψ-conditioned subalgebra M0 ⊂ M and an endomorphism α of M
satisfying

(i) unitality: α(1l) = 1l;
(ii) stationarity: ψ ◦ α = ψ;

(iii) conditioning: α and the modular automorphism group σψt commute for all
t ∈ R.

The stationary process M is also denoted by the quadruple (M, ψ, α,M0) and

ια ≡ (ιαi )i∈N0 : (M0, ψ0) → (M, ψ), ιαi := αi|M0 ,

is called the random sequence associated to M , for brevity also denoted by I α.
The family of von Neumann subalgebras (MI)I⊂N0 , with

MI :=
∨

i∈I

αi(M0),
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is called the canonical filtration (generated by M ). The von Neumann subalgebra

Mtail =
⋂

n∈N0

αn(M)

is called the tail algebra of M . We denote by Mα the fixed point algebra of the
endomorphism α.

Finally, two minimal stationary processes M and M̃ are isomorphic if there

exists an isomorphism Π: M̃ → M such that

ψ ◦ Π = ψ̃, Π ◦ α̃ = α ◦ Π, Π(M̃0) = M0.

The modular condition (iii) is needed for a non-tracial state ψ to ensure:

⋄ Von Neumann algebras generated by the αn(M0)’s and their intersections
are ψ-conditioned (see Remark 2.2).

⋄ Stationary processes and stationary random sequences are in correspon-
dence (see Lemma 2.5).

⋄ A unilateral stationary process extends to a bilateral stationary process
(see Theorem 2.7).

Remark 2.2. Condition (iii) of Definition 2.1 entails that the ψ-preserving con-

ditional expectation EMI
from M onto MI exists: M0 is globally σψt -invariant

and now condition (iii) implies that α(M0) and, more generally, MI are globally

σψt -invariant. Thus Takesaki’s theorem on the existence of ψ-preserving conditional
expectations applies. Of course, the condition (iii) can be dropped if ψ is a trace.
We are indebted to Kümmerer for simple examples on hyperfinite IIIλ factors such

that α(A0) fails to be globally σψt -invariant without condition (iii) [Küm].

To avoid reiterations throughout this paper we shall use the following convention
for properties of a stationary process.

Definition 2.3. The stationary process M is said to have property ‘A’ if its as-
sociated random sequence I α has property ‘A’. For example, M is minimal if its
associated random sequence I α is minimal.

The canonical filtrations of a stationary process M and its associated random
sequence I α always coincide. But the tail algebra M tail of M may be larger than
the tail algebra of I α,

M
I tail =

⋂

n∈N0

∨

k≥n

ι
(α)
k (M0) =

⋂

n∈N0

∨

k≥n

αk(M0).

Lemma 2.4. If M is minimal, then MI tail = Mtail.

Proof. This is easily concluded from
∨

k≥n

ι
(α)
k (M0) =

∨

k≥n

αk(M0) = αn
∨

k≥0

αk(M0) ⊆ αn(M)

and minimality. �

We continue with the correspondence between stationary processes and station-
ary random sequences under the condition of minimality. We include this well
known result for reasons of transparency since the proof of the noncommutative
version of the extended de Finetti theorem makes heavily use of it.
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Lemma 2.5. There is a one-to-one correspondence between (equivalence classes
of)

(a) minimal stationary processes M = (M, ψ, α,M0);
(b) minimal stationary random sequences I with random variables

(ιn)n≥0 : (A0, ϕ0) → (M, ψ).

The correspondence from (a) to (b) is given by

(A0, ϕ0) := (M0, ψ|M0) and ιn := αn|M0 .

The correspondence from (b) to (a) is established via

M0 := ι0(A0) and α(ι[i;a]) := ι[Θ ◦ i;a]

for all n ∈ N, n-tuples i : [n] → N0 and a ∈ An
0 .

Proof. We omit all fairly clear parts of the proof and only show that the properties

of I imply the modular condition ασψt = σψt α. Since the von Neumann algebras

ιn(A0) are ψ-conditioned, the random variables ιn intertwine σϕ0

t and σψt , the
modular automorphism groups of (A0, ϕ0) and (M, ψ) (see Remark 1.3 and [AD06,
Lemma 2.5]). Thus

σψt ◦ α(ι[i;a]) = σψt ι[Θ ◦ i;a] = ι[Θ ◦ i;σϕ0

t (a)] = α(ι[i;σϕ0

t (a)])

= α ◦ σψt (ι[i;a])

establishes ασψt = σψt α on a weak*-total subset of M. Here σϕ0

t (a) denotes the
n-tuple

(
σϕ0

t (a1), . . . σ
ϕ0

t (an)
)
. �

We will need the next theorem for approximations in the proof of Theorem 4.2.

Definition 2.6. A stationary process M̂ = (M̂, ψ̂, α̂,M̂0) is said to be bilateral if

the endomorphism α̂ is an automorphism of M̂. A bilateral stationary process M̂

is minimal if M̂ =
∨
n∈Z

α̂n(M̂0).

Theorem 2.7. A unilateral stationary process M = (M, ψ, α,M0) extends to a

bilateral stationary process M̂ = (M̂, ψ̂, α̂,M̂0). In other words, there exists a

random variable j : (M, ψ) → (M̂, ψ̂) such that

j(M0) = M̂0 and jαn = α̂nj (n ∈ N0).

If M̂ is minimal, then M̂α̂ = j(Mα).

This theorem is immediate from Kümmerer’s work on state-preserving Markov
dilations. We provide some results from [Küm88a] which are essential for its proof.

Let (A, ϕ) and (B, ψ) be two probability spaces. A morphism T : (A, ϕ) → (B, ψ)
is a unital completely positive map T : A → B satisfying ϕ = ψ◦T . The morphisms
from (A, ϕ) into itself are denoted by Mor(A, ϕ).

Definition 2.8. A morphism T ∈ Mor(A, ϕ) admits a state-preserving dilation

if there exists a probability space (Â, ϕ̂), an automorphism T̂ ∈ Aut(Â, ϕ̂), two

morphisms j : (A, ϕ) → (Â, ϕ̂) and Q : (Â, ϕ̂) → (A, ϕ) such that T n = Q T̂ nj for

all n ∈ N0. A state-preserving dilation is minimal if Â =
∨
n∈Z

T̂ nj(A).
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Note in above definition that T n = Q T̂ nj reads as idA = Qj for n = 0. This
implies that j is a random variable from (A, ϕ) to (B, ψ) and the composition jQ
is the ψ-preserving conditional expectation from B onto j(A). We refer the reader
to [Küm85] for further details.

Proposition 2.9 ([Küm88a]). Let (A, ϕ) be a probability space and suppose α is a
ϕ-preserving unital endomorphism of A. Then the following are equivalent:

(a) α admits a state-preserving dilation.
(b) α commutes with the modular automorphism group σϕt .

We include the proof from [Küm88a] for the convenience of the reader. It uses
inductive limits of C*-algebras (see for example [Sak71, Subsection 1.23]).

Proof. The implication ‘(a) ⇒ (b)’ is shown in [Küm85, 2.1.8]. So it remains to
prove the converse.

For n ∈ N0 put An := A and for n ≥ m interpret αn−m as a *-isomorphism of Am

into An. Define Ã as the C*-inductive limit of {Am;αn−m |(n,m) ∈ N0 × N0, n ≥
m}. Moreover, putting ϕn := ϕ for n ∈ N0, one has ϕn(α

n−m(x)) = ϕn(x)

for x ∈ Am = A = An with n ≥ m. The state ϕ̃ on Ã is introduced as the
inductive limit of {ϕm;αn−m |(n,m) ∈ N0 × N0, n ≥ m} [Sak71, 1.23.10]. Identify

Ã with the norm closure of
⋃
n≥0 An. Thus α(An) is identified with An−1 (n ≥ 1).

Consequently α extends to
⋃
n≥0 An and then to its norm closure Ã. Doing so we

obtain a ϕ̃-preserving automorphism α̃ of Ã. We define an injection j̃ by identifying
A with A0.

Since α commutes with the modular automorphism group σϕt the subalgebra
αn(A) ⊂ A is globally σϕt -invariant and the ϕ-preserving conditional expectation
from A onto An exists for all n ∈ N (see [Tak03, Theorem]). Correspondingly, for
each n ∈ N, we find a completely positive map Qn : An → A such that, for m ≤ n,

ϕn = ϕ ◦Qn, Qn ◦ j̃ = idA, Qn|Am
= Qm.

By continuity this leads to a completely positive map Q̃ : Ã → A such that, for
n ≥ 1,

ϕ̃ = ϕ ◦ Q̃, Q̃ ◦ j̃ = idA, Q̃|An
= Qn.

Let σϕm

t be the modular automorphism group associated to (Am, ϕm). It follows
σϕn

t (x) = σϕm

t (x) for x ∈ Am, n ≥ m. Therefore the modular groups on An extend

to a group σt on Ã such that ϕ̃ satisfies the KMS condition with respect to σt (see

[Ped79, 8.12.3]). Hence ϕ̃ extends to a faithful normal state ϕ̂ on Â := Πϕ̃(Ã)′′

[Ped79, 8.14.4].
Now it is routine to show that α̃ extends to the ϕ̂-preserving automorphism α̂

of Â, the map Q̃ to the completely positive map Q : Â → A satisfying ϕ ◦ Q = ϕ̂
and the injection j̃ to an injective *-homomorphism j : A → Â such that ϕ = ϕ̂ ◦ j
and j(A) = Πϕ̃(A0)

′′. Finally, αn = Qα̂nj is immediately verified for n ∈ N0. �

Proof of Theorem 2.7. The endomorphism α of M satisfies the condition (b) of

Proposition 2.9. Thus there exists a probability space (M̂, ψ̂), a ψ̂-preserving auto-

morphism α̂ of M̂, and a random variable j : (M, ψ) → (M̂, ψ̂) such that jαn = α̂nj

for all n ∈ N0. Clearly M̂0 := j(M0) is a ψ̂-conditioned subalgebra of M̂. Finally,

M̂α̂ = j(Mα) is the content of [Küm85, Corollary 3.1.4]. �
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3. Conditional independence and conditional factorizability

From our investigations of distributional symmetries emerge two closely related
noncommutative generalizations of classical conditional independence. Here we
concentrate on the case of two random variables; the more general setting of ran-
dom sequences is covered in the consecutive section where we will meet a further
ramification of these two notions.

Definition 3.1. Let (M, ψ) be a probability space with three ψ-conditioned von
Neumann subalgebras M0,M1 and M2. Then M1 and M2 are said to be

(i) M0-independent or conditionally independent if

EM0(xy) = EM0(x)EM0 (y)

for all x ∈ M1 ∨M0 and y ∈ M2 ∨M0;
(ii) M0-factorizable or conditionally factorizable if

EM0(xy) = EM0(x)EM0 (y)

for all x ∈ M1 and y ∈ M2.

This definition does not assume the inclusion M0 ⊂ M1 ∩ M2. It is open if
conditional factorizability implies conditional independence and thus the equiva-
lence of these two notions. But this is of course the case if M0 ≃ C, and we
will state in Lemma 3.6 further conditions under which M0-factorizability implies
M0-independence.

Remark 3.2. An alternative formulation of M0-independence is sometimes easier
to verify in applications. Under the assertions of Definition 3.1, the following are
equivalent:

(a) M1 and M2 are M0-independent;

(b) there exist M0-independent von Neumann subalgebras M̃1 and M̃2 of M
such that M0 ⊂ M̃1 ∩ M̃2 and Mi ⊂ M̃i (i = 1, 2).

Since this equivalence is fairly clear, we omit its proof.

Remark 3.3. If M0 ≃ C, we will also write C-independence instead of M0-
independence. Note that M1 and M2 are C-independent if and only if ψ(xy) =
ψ(x)ψ(y) for all x ∈ M1 and y ∈ M2 [Küm88b].

The failure of the inclusion M0 ⊂ M1 ∩M2 happens frequently in the context
of distributional symmetries and is, in classical probability, intimately related to
random probability measures. We illustrate this by the most simple example which
may be taken from classical probability (just choose A ≃ C

2 ⊗C
2 in Example 3.4).

Example 3.4. Let A1 and A2 be two C-independent von Neumann subalgebras of
the probability space (A, ϕ). We define the probability space (M, ψ) by M := A⊕A
and ψ := 1

2 (ϕ ⊕ ϕ). For i = 1, 2, the embeddings Ai ∋ x → x ⊕ x ∈ M define
the von Neumann subalgebras M1 and M2, respectively. Furthermore, we put
M0 = C1lA ⊕ C1lA ≃ C2. One has Mi ∨M0 = Ai ⊕Ai for i = 1, 2 and calculates

EM0(xy) = EM0(x)EM0 (y)

for all x ∈ M1 ∨M0 and y ∈ M2 ∨M0. Thus M1 and M2 are M0-independent.
But M1 ∩M2 ≃ C, so M0 6⊂ M1 ∩M2.
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Remark 3.5. Another calculation shows in the above example that M1 and M2

are C-independent. But this is rather an accident because we have chosen identical
states on each component of the direct sum.

Evidently, M0-independence implies M0-factorizability. But it is open if M0-
factorizability implies M0-independence. Frequently this can be concluded if addi-
tional algebraic structures are available (see also Theorem 4.2). All presently known
examples (within our setting) satisfy at least one of the following conditions.

Lemma 3.6. M0-factorizability and M0-independence are equivalent under each
of the following additional assertions:

(i) (trivial conditioning) M0 ≃ C;
(ii) (central conditioning) M0 ⊂ M∩M′;
(iii) (classical probability) M = M′;
(iv) (relative commutants) M0 ⊂ M1

′ ∩M2
′;

(v) (commuting squares) M0 ⊂ M1 ∩M2.

Proof. Each of the assertions (i) to (iv) implies that the vector spaces

{ax | a ∈ M0, x ∈ M1} and {yb | b ∈ M0, y ∈ M2}
are weak* total in M0∨M1 and M0∨M2, respectively. Thus the module property
of conditional expectations and M0-factorizability imply

EM0(axyb) = aEM0(xy)b = aEM0(x)EM0 (y)b = EM0(ax)EM0 (yb).

This equalities extend bilinearly and an approximation argument completes the
proof in the cases (i) to (iv). The proof under the assertion (v) is trivial. �

Our notion of conditional independence is in close contact with Popa’s notion
of commuting squares [Pop83a, Pop83b, PP86]. Detailed information on their role
in subfactor theory is provided in [JS97, GHJ89]. We will make frequent use of
some of their properties. Note that these assertions do not apply for conditional
factorizability.

Proposition 3.7. Suppose M0 ⊂ M1 ∩ M2, in addition to the assertions of
Definition 3.1. Then the following are equivalent:

(i) M1 and M2 are M0-independent;
(ii) EM1(M2) = M0;
(iii) EM1EM2 = EM0

(iv) EM1EM2 = EM2EM1 and M1 ∩M2 = M0.

In particular, it holds M0 = M1 ∩ M2 if one and thus all of the four assertions
are satisfied.

Proof. The tracial case for ψ is proved in [GHJ89, Prop. 4.2.1]. The non-tracial
case follows from this, after some minor modifications of the arguments therein. �

We close this section with some remarks on examples and references which are
closely related to conditional independence in our noncommutative setting. The
author is presently not aware of published examples in the quantum setting beyond
the assertions stated in Lemma 3.6. It would be of interest to find examples of
von Neumann algebras which are conditionally factorizable, but not conditionally
independent, if possible at all.
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Remarks 3.8. (1) C-independence emerged from investigations of Kümmerer on
the structure of stationary quantum Markov processes [Küm85, Küm88a, Küm88b,
Küm93]. Its generalization to commuting squares is explored further from the per-
spective of noncommutative probability in [Rup95, Kös00, Kös03, HKK04, KS07].
(2) Examples for C-independence are classical independence, tensor independence
and free independence. Further examples originate from pioneering work of Bożejko
and Speicher [BS91, BS94] and are given by generalized or noncommutative Gauss-
ian random variables [BKS97, GM02, Krȯ02]. The most well known among them
are q-Gaussian random variables. Crucial for the appearance of C-independence
are the presence of white noise functors [Küm96, GM02] and a vacuum vector of
the underlying deformed Fock space which is separating for the considered von
Neumann algebras.
(3) Sources of examples for M0-independence are, of course, conditional indepen-
dence in probability theory and random probability measures on standard Borel
probability spaces. Further examples, satisfying the inclusion M0 ⊂ M1 ∩ M2,
arise from amplifications of examples for C-independence by tensor product con-
structions. Freeness with amalgamation as well as commuting squares from sub-
factor theory are further sources of M0-independence (with M0 ⊂ M1 ∩M2). We
refer to [HKK04] for a more detailed treatment of some of these examples.
(4) M0-independence appears, also under the assumption M0 ⊂ M1 ∩M2, in the
work of Junge and Xu on noncommutative Rosenthal inequalities [JX03] and within
Junge’s quantum probabilistic approach to embedding Pisier’s operator Hilbert
space OH into the predual of the hyperfinite III1-factor [Jun06].

4. Stationarity and conditional independence/factorizability

This section is devoted to show in Theorem 4.2 that conditional factorizability
implies conditional independence in the context of stationarity and under a cer-
tain conditioning. We close with an illustration of conditional independence and
conditional factorizability by an algebraic treatment of an infinite sequence of ex-
changeable {0, 1}-valued random variables.

Due to the noncommutativity of our setting, there are (at least) two natural ways
to extend the notions of conditional independence and conditional factorizablility
(see Definition 3.1) from two random variables to random sequences indexed by N0.
One may regard N0 as a set, or as an ordered set (with its natural order).

Definition 4.1. The (identically distributed) random sequence I , given by

ι ≡ (ιi)i∈N0 : (A0, ϕ0) → (M, ψ),

with canonical filtration (AI)I⊂N0 , is said to be

(CI) full N -independent or conditionally full independent, if AI and AJ are
N -independent for all I, J ⊂ N0 with I ∩ J = ∅;

(CIo) order N -independent or conditionally order independent, if AI and AJ are
N -independent for all I, J ⊂ N0 with I < J or I > J ;

We say that I is

(CF) full N -factorizable or conditionally full factorizable, if AI and AJ are N -
factorizable for all I, J ∈⊂ N0 with I ∩ J = ∅;

(CFo) order N -factorizable or conditionally order factorizable, if AI and AJ are
N -factorizable for all I, J ⊂ N0 with I < J or I > J ;
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We will deliberately drop the attributes ‘full’ or ’order’ if we want to address
conditional independence or conditional factorizability only on the informal level
or if it is clear from the context whether the index set N0 is regarded with order
structure or without it. Obviously we have the following implications:

(CI) ⇒ (CF)
⇓ ⇓

(CIo) ⇒ (CFo).

We record that this gives the following implications in the noncommutative ex-
tended de Finetti theorem.

Proof of Theorem 0.2, (c) ⇒ (co) and (d) ⇒ (do). This is obvious for N = Mtail

from Definition 4.1 and above diagram. �

A natural question is to ask if the converse implications in above diagram are also
valid. Actually, we do not know an answer in this generality. But an affirmative
answer is available for the equivalence of conditional independence and conditional
factorizability if the random sequence I is stationary and N contained in the
fixed point algebra of the corresponding stationary process (see Lemma 2.5 for this
correspondence).

Theorem 4.2. Let M be a minimal stationary process and suppose the ψ-condi-
tioned von Neumann subalgebra N satisfies N ⊂ Mα. Then the following are
equivalent:

(CI) M is full N -independent;
(CF) M is full N -factorizable.

Furthermore, the following are equivalent under the same assertions:

(CIo) M is order N -independent;
(CFo) M is order N -factorizable.

We will see in Section 6 that conditional order factorizability (CFo), the weakest
of the four properties, already suffices to identify N as the fixed point algebra of the
endomorphism α which equals moreover the tail algebra. There it will suffice, due to
Theorem 4.2, to establish these fixed point characterization results of Kolmogorov
type on the level of conditional factorizability. Moreover we will benefit from this
simplification in Section 7 and Section 8 when showing that spreadability implies
conditional independence.

We prepare the proof of Theorem 4.2 by some well known results on approxima-
tions.

Lemma 4.3. Let x1, . . . , xp ∈ B1(M), the unit ball of M. Suppose further that
each xi is approximated by a sequence (xi,n)n∈N ⊂ B1(M) in the strong operator
topology. Then

x1x2 · · ·xp = sot- lim
n→∞

x1,nx2,n · · ·xp,n.

Proof. This is evident from the definition of the strong operator topology in the
case p = 2, since ‖x1,n‖ ≤ 1 and

x1,nx2,n − x1x2 = x1,n(x2,n − x2) + (x1,n − x1)x2.

The more general case p > 2 is concluded by induction. �
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Lemma 4.4. Suppose M is a minimal bilateral stationary process and let the
function N : N → Z be given. Then every a ∈ Mα is approximated by a sequence
(an)n∈N ⊂ M in the strong operator topology such that

an ∈ M{0,1,...,n−1}+N(n) and ‖an‖ ≤ ‖a‖.
Proof. We assume without loss of generality that all a is in the unit ball B1(M) ∩
Mα. The *-algebra Malg

N0
is weak*-dense in M. Thus, by Kaplansky’s density

theorem, a ∈ N is approximated by a sequence (bn)n ⊂ Malg
N0

∩ B1(M) in the
strong operator topology. Put

an := αN(n)EM[0,n−1]
(bn) ∈ M{0,1,...,n−1}+N(n).

and note that α is an automorphism of M, since we are working in the bilateral
setting. We claim that

sot- lim
n
an = a. (4.1)

Indeed, the sequence (EM[0,n−1]
)n is norm bounded and converges to idM in the

pointwise strong operator topology; this is clear on Malg
N0

and an ε
2 -argument gives

the general case. Thus
(
EM[0,n−1]

(bn)
)
n

converges to a in the strong operator
topology. We use next the ψ-topology which is induced by the maps M ∋ x 7→
ψ(x∗x)1/2. Since the strong operator topology and the ψ-topology coincide on
bounded sets,

‖an − a‖ψ = ‖αN(n)
(
EM[0,n−1]

(bn) − a
)
‖ψ

= ‖EM[0,n−1]
(bn) − a‖ψ

completes the proof. �

Proof of Theorem 4.2. Only the implications ‘(CFo) =⇒ (CIo)’ and ‘(CF) =⇒ (CI)’
require a proof, since their reverse implications are trivial. We can assume by
Theorem 2.7 that M = (M, ψ, α,M0

)
is a minimal bilateral stationary process.

This will allow us to approximate elements of N in an appropriate manner. Note
that full (resp. order) N -factorizability of the family (MI)I⊂N0 implies immediately
full (resp. order) N -factorizability of (MI)I⊂Z by stationarity; this is clear for finite
sets I and the general case is done by approximation.

We need to show that full (resp. order) N -factorizability of (MI)I⊂N implies

EN (xy) = EN (x)EN (y)

for all x ∈ MI ∨ N and y ∈ MJ ∨ N with I ∩ J = ∅ (resp. I < J).
For this purpose, we start with bounded sets I, J ⊂ N0 and consider monomials

of the form

x = z1a1 · · · zpap and y = zp+1ap+1 · · · z2pa2p,

with zi ∈ MI , zp+i ∈ MJ and ai, ai+p ∈ N (i = 1, . . . , p). We approximate all ai’s
in the strong operator topology and can assume without loss of generality that all
zi’s and ai’s are in the unit ball B1(M). Let Ni : N → Z be given function which
will be specified later. By Lemma 4.4, there exist sequences (ai,n)n∈N ⊂ B1(M)
satisfying

ai = sot- lim
n→∞

ai,n,

ai,n ∈ M{0,1,...,n−1}+N(n).
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Let

xn := z1a1,nz2a2,n · · · zpap,n,
yn := zp+1ap+1,nzp+2ap+2,n · · · z2pa2p,n.

We specify next the choice of the functions Ni. Let Ni(n) := −n and Np+i(n) := N
for i = 1, . . . , p, where N > max I ∪ J . Note that the sets

In := I ∪ {−n, n+ 1, . . . ,−1},
Jn := J ∪ {N,N + 1, . . . , N + n− 1}

are disjoint if I and J are disjoint; and that In < Jn if I < J . Since xn ∈ MIn
and

yn ∈ MJn
we conclude from order (resp. full) N -factorizability that

EN

(
xnyn

)
= EN

(
xn

)
EN (yn

)
,

which entails

EN

(
xy

)
− EN (x)EN (y)

= EN

(
xy − xnyn

)
+ EN

(
xn)EN

(
yn − y

)
+ EN

(
xn − x

)
EN (y).

We infer from Lemma 4.3 and the sot-sot-continuity of conditional expectations
that the right hand side of this equation vanishes for n→ ∞ in the strong operator
topology. Thus full (resp. order) N -factorizability implies, for each p ∈ N,

EN (z1a1 · · · zpapzp+1ap+1 · · · z2pa2p)

= EN (z1a1 · · · zpap)EN (zp+1ap+1 · · · z2pa2p) (4.2)

for any z1, . . . , zp ∈ MI , zp+1, · · · z2p ∈ MJ and a1, · · · a2p ∈ N whenever I and
J are disjoint (resp. ordered) and bounded. This equality extends by bilinearity
to the *-algebras MI ∪ N and MJ ∪ N . (By filling in additional factors 1lM if
necessary we can always achieve that monomials have the same number of factors.)
Since MI ∪N and MJ ∪N are weak* dense in MI ∨N and MJ ∨N , the equality
(4.2) extends further to the weak* closure, using Kaplansky’s density theorem and
arguments similar to that in the proof of Theorem 6.4. Finally, another density
argument extends the validity of (4.2) from bounded disjoint sets I and J to possibly
unbounded disjoint sets. �

Remark 4.5. At the time of this writing and in the generality of our setting, we
have no information about the validity of the remaining implications (CIo) ⇒ (CI)
and (CFo) ⇒ (CF), even under the assumptions of stationarity and N ≃ C. In
particular, we do not know if an infinite stationary random sequence exists which
is conditionally order independent, but fails to be conditionally full independent.

We continue with an illustration of above concepts of conditional independence
and conditional factorizability for stationary random sequences. The example is
the von Neumann algebraic reformulation of infinite sequence of zero-one-valued
random variables, as they have been the subject of de Finetti’s pioneering investi-
gations on exchangeability [Fin31]. We will observe in this example why it is too
restrictive to assume that N is contained in the image of random variables.

Example 4.6. Let (A0, ϕ0) be given by

A0 = C
2 and ϕ0 = trp
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with trp((a1, a2)) = pa1 + (1 − p)a2 for some fixed p ∈ (0, 1). We realize the prob-
ability space (M, ϕ) as a mixture of infinite coin tosses with respect to some prob-
ability measure ν on the standard measurable space ([0, 1],Σ), assuming ν({0}) =
ν({1}) = 0 and ν({p}) < 1 for any p ∈ (0, 1):

M =

∫ ⊕

[0,1]

M(p)dν(p), M(p) =
⊗

n∈N0

C2,

ψ =

∫ ⊕

[0,1]

ψ(p)dν(p), ψ(p) =
⊗

n∈N0

trp .

Here denotes M(p) the infinite von Neumann algebraic tensor product of C2 with
respect to the infinite tensor product state on ψ(p) which are obtained by passing
through the GNS construction starting from the *-algebra

⋃
k∈N

⊗nk=0C2 equipped
with the product state

⋃
k∈N

⊗nk=0 trp. We refer the reader to [Tak79] for further
information on direct integrals of von Neumann algebras and states.
The random variable ιi : (A0, ϕ0) → (M, ψ), with i ∈ N0, is defined by the constant
embedding of a ∈ C2 into the i-th factor of each fiber of the direct integral:

ιi(a) =

∫ ⊕

[0,1]

1lA0 ⊗ · · · ⊗ 1lA0︸ ︷︷ ︸
i factors

⊗ a⊗ 1lA0 ⊗ · · ·dν(p)

Finally, we put

N :=

∫ ⊕

[0,1]

C1lM(p)dν(p) ≃ L∞([0, 1], ν).

Note that our assumptions on the measure ν imply N 6≃ C.
The canonical filtration (AI)I⊂N0 generated by the random sequence ι ≡ (ιi)i∈N0

is defined by

AI =
∨

i∈I

ιi(A0).

The random sequence ι is minimal, i.e. we have

M =
∨

n∈N0

ιi(A0).

This follows if we can ensure that
∨
n∈N0

ιi(A0) contains N . Indeed, Kakutani’s

theorem entails that the family of infinite product states {ψ(p)}p∈(0,1) is mutually
disjoint [Hid80]. We conclude from this that every element x ∈ N ≃ L∞([0, 1], ν)
can be approximated by a bounded sequence (xn)n∈N ⊂ ⋃

i∈N0
ιi(A0) in the weak

operator topology. This implies the minimality of the random sequence.

An elementary computation shows AI ≃ C2|I|

for any finite set I ⊂ N0. In the case
of an infinite set I, we restrict the family of infinite product states {ψ(p)}p∈(0,1) to
AI and conclude again by the Kakutani theorem [Hid80] that these restricted states
are mutually disjoint. This implies that the von Neumann algebra AI contains a
copy of N whenever |I| = ∞.
Now it is straightforward to verify the conditional full factorizability (CF)

EN (xy) = EN (x)EN (y)

for all x ∈ AI and y ∈ AJ with disjoint subsets I, J ⊂ N0. Since all von Neumann
algebras are commutative, it is immediate from the module property of conditional
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expectation that (CF) upgrades to (CI), i.e.

EN (xy) = EN (x)EN (y)

for all x ∈ AI ∨ N and y ∈ AJ ∨ N with disjoint subsets I, J ⊂ N0. Thus the
random sequence (ιi)i∈N0 is full N -independent. But N 6⊂ AI ∩ AJ if one of the
sets I or J is finite.

Remark 4.7. There are *-algebraic, C*-algebraic and W*-algebraic approaches to
noncommutative probability and it is instructive to compare them at the hand of

Example 4.6. Of course, the *-algebras Aalg
I :=

⋃
i∈I ιi(A0) as well as its norm-

closure are contained in the von Neumann algebra AI . The latter contains a copy

of L∞([0, 1], ν) if |I| is infinite, but Aalg
I and its norm closure do not.

5. Noncommutative i.i.d. sequences may be non-stationary

It is folklore in classical probability and free probability that independence resp.
freeness of an identically distributed random sequence implies stationarity. But this
implication fails in our broader context of noncommutative independence.

Theorem 5.1. There exist full C-independent identically distributed random se-
quences I which fail to be stationary.

Proof, in particular of Theorem 0.2 (c) 6⇐ (d) and (co) 6⇐ (do). See Example 5.2
or Example 5.4 below. Since full C-independence implies order C-independence we
have also shown (co) 6⇐ (do). �

Let us first outline our strategy to produce such examples. Recall from the
introduction that an infinite random sequence I with random variables

(ιn)n≥0 : (A0, ϕ0) → (M, ψ)

is automatically identically distributed. Suppose now that I is stationary and
C-independent. Our goal is to ‘perturbate’ the random variables ιn such that C-
independence is preserved, but stationary is obstructed. This can be done in two
ways, for the domain or the codomain of each random variable ιn.

Example 5.2 (Perturbation of codomain). Consider (R, tr), the hyperfinite II1-
factor equipped with its normalized trace. Let (Mm, trm) be the complex m×m-
matrices equipped with the normalized trace. The canonical embeddings

M2 ∋ x 7→ ιn(x) := 1lM2 ⊗ · · · ⊗ 1lM2 ⊗ x ⊗
n-th position

1lM2 ⊗ · · ·

define the random sequence I with random variables

(ιn)n≥0 : (M2, tr2) → (R, tr).
It is easily verified that I is C-independent and stationary. We will deform this
random sequence to obtain a non-stationary random sequences as follows. Under
the canonical identification of M2 ⊗M2 and M4, the unitary matrix

Uω =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ω


 , |ω| = 1,
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defines the trace-preserving automorphism x 7→ UωxU
∗
ω of M2 ⊗ M2. It is well

known in subfactor theory that the inclusions

Uω(M2 ⊗ 1lM2)U
∗
ω ⊂ M2 ⊗M2

∪ ∪
C 1lM2⊗M2 ⊂ M2 ⊗ 1lM2

form a commuting square [Jon91, Rup95, JS97]. We canonically amplify this au-
tomorphism to the automorphism γω ∈ Aut(R, tr) which acts trivial on all higher
tensor product factors. Consider now the random sequence I (ω) with random

variables
(
ι
(ω)
n

)
n≥0

defined by

ι(ω)
n :=

{
ιn if n 6= 1

γωι0 if n = 1.

Note that I (1) is the random sequence I . Clearly I (ω) is identically distributed

for any unimodular ω ∈ C. We note that the von Neumann algebras ι
(ω)
n (M2)

mutually commute for n 6= 1. So do ι
(ω)
1 (M2) and ι

(ω)
n (M2) for n ≥ 2. We conclude

from this that I (ω) is full C-independent. But we calculate for a =

[
0 1
1 0

]
that

tr
(
ι
(ω)
0 (a)ι

(ω)
1 (a)ι

(ω)
0 (a)ι

(ω)
1 (a)

)
=

1

2
(ω + ω),

and

tr
(
ι
(ω)
2 (a)ι

(ω)
3 (a)ι

(ω)
2 (a)ι

(ω)
3 (a)

)
= 1.

This leads us to the conclusion that I (ω) is stationary if and only if ω = 1.

Remark 5.3. Example 5.2 illustrates that the distribution of two C-independent
(identically distributed) random variables does not determine their joint distribu-
tion. This is in contrast to two distinguished examples for C-independence, tensor
independence and free independence. See [Spe97, BG02] for further information on
the related universality properties.

We sketch next how local perturbations of random variables on their domain are
capable to produce such effects. Suppose the minimal stationary random sequence
I with random variables

(ιn)n∈N0 : (A0, ϕ0) → (M, ψ)

is C-independent (in the ordered or full sense). Furthermore, let γ ≡ (γn)n≥0 ⊂
Aut(A0, ϕ0) be a sequence of ‘local perturbations’. Then we can associate to each
sequence γ a random sequence I (γ) by putting

ι(γ)
n := ιn ◦ γn.

The random sequence I (γ) is again minimal and C-independent. Suppose that
there is a sequence γ with

(ι0, ι1, . . . , ιn−1, ιn, ιn+1 . . .)
distr

6= (ι
(γ)
0 , ι

(γ)
1 , . . . , ι

(γ)
n−1, ιn, ιn+1 . . .)

for some n ∈ N. We conclude immediately that the random sequence on the right
hand side fails to be stationary, but it is still identically distributed and enjoys
C-independence.
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Example 5.4 (Perturbation of domain). Let ℓ2(N) be the real Hilbert space of
square-summable sequences and consider the q-Gaussian field Γq(ℓ

2(N)) for some
fixed 0 < q < 1. These fields are the von Neumann algebra generated by q-Gaussian
field operators ωq(f), f ∈ ℓ2(N), acting on the q-deformed Fock space Fq(ℓ2(N))
(see [BKS97, GM02] for further details). Γq(ℓ

2(N)) is a non-hyperfinite II1-factor
and we denote its normalized trace by trq. The second quantization of the canonical
unilateral shift on ℓ2(N) provides us with a unital trq-preserving endomorphism α of
Γq(ℓ

2(N)). Identify R with the subspace generated by the first coordinate of ℓ2(N).
Doing so we obtain the abelian von Neumann subalgebra Γq(R) ⊂ Γq(ℓ

2(N)) and
we denote the restriction of trq to this subalgebra by the same symbol. Now it is
straightforward to see that

ιn := αn|Γq(R)

defines a full C-independent random sequence I with random variables

(ιn≥0) : (Γq(R), trq) → (Γq(ℓ
2(N)), trq),

which is of course stationary. Let γ ∈ Aut(Γq(R), trq) be fixed and consider the
random sequence Iγ which is obtained from perturbating the first random variable
of I :

ιγn :=

{
ιn if n 6= 1

ι0 ◦ γ if n = 0.

The central result by van Leeuwen and Maassen on the obstruction for q-deformation
of the convolution product can be reformulated as:

Theorem 5.5 ([vLM96]). Let 0 < q < 1. There exists a ‘perturbation’ γ ∈
Aut(Γq(R), trq) such that

trq

((
ωq(f) + α

(
ωq(f)

))4
)

6= trq

((
γ
(
ωq(f)

)
+ α

(
ωq(f)

))4
)

for 0 6= f ∈ R.

Note that ω(f), γ
(
ω(f)

)
and α

(
ω(f)

)
have identical distributions and each of

the first two random variables is C-independent from the third one. Thus the
knowledge of the individual distributions of C-independent random variables does
not completely determine their joint distributions; this depends on the concrete
realization of the random variables.

The ‘perturbation’ γ is of constructed in [vLM96] starting from a µ-preserving
point transformation on the spectrum of the (selfadjoint) q-Gaussian field operator
ωq(f), for some fixed f ∈ R, where µ is induced by the spectral measure of ωq(f)
with respect to trq.

Corollary 5.6. Iγ is full C-independent and non-stationary.

Proof. It is immediate from its construction that I is full C-independent. The
perturbation γ of the domain of the first random variable does not effect its range.
Thus Iγ is also full C-independent.

Let a := ωq(f) for notational convenience. A straightforward computation yields
for the left hand side of the inequality in Theorem 5.5 that

trq

((
a+ α(a)

)4
)

= 2 trq(a
4) + 4 trq(a

2) trq(a
2) + 2 trq

(
aα(a)aα(a)

)
.
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(Expand the product; use traciality, C-independence, trq ◦α = trq and the centred-
ness of a.) Similarly, the right hand side of this inequality simplifies to

trq

((
γ(a) + α(a)

)4
)

= 2 trq(a
4) + 4 trq(a

2) trq(a
2) + 2 trq

(
γ(a)α(a)γ(a)α(a)

)
.

Since

trq
(
γ(a)α(a)γ(a)α(a)

)
6= trq

(
aα(a)aα(a)

)

by Theorem 5.5, we have

trq
(
γ(a)α(a)γ(a)α(a)

)
6= trq

(
α(a)α2(a)α(a)α2(a)

)

and consequently (ι0 ◦ γ, ι1, ι2, . . .)
distr

6= (ι1, ι2, ι3, . . .). �

The invariance of all finite joint distributions of an identically distributed ran-
dom sequence under all local automorphisms seems to be a very strong condition.
If the von Neumann algebra M is abelian and γ ∈ Aut(A0, ϕ0) ergodic, such a
local invariance property implies the C-independence of the random sequence by
an application of the mean ergodic theorem. In the noncommutative context, this
observation invites to introduce ‘top-order C-independence’ for a random sequence
I , i.e. the von Neumann algebras

∨
k<n ιk(A0) and ιn(A0) are C-independent for

all n ∈ N. If G ⊂ Aut(A0, ϕ0) is an amenable ergodic subgroup such that, for all
n ∈ N,

ψ
(
x ιn(a)

)
= ψ

(
x ιn(γ(a))

)

for all x ∈ ∨
k<n ιk(A0) and γ ∈ G, then the random sequence (ιn)n∈N0 is already

‘top-order C-independent’.

Question 5.7. Suppose that a minimal random sequence I with random variables

(ιn)n∈N0 : (A0, ϕ0) → (M, ψ)

has joint distributions which are invariant under all ‘local perturbations’ (γn)n∈N ⊂
Aut(A0, ϕ0):

(ι0, ι1, ι2, . . .)
distr
= (ι0 ◦ γ0, ι1 ◦ γ1, ι2 ◦ γ2, . . .).

Does the ergodicity of Aut(A0, ϕ0) imply that I is full C-independent? And if so,
can one show that this C-independence must be either tensor independence or free
independence?

6. Stationarity with strong mixing and
noncommutative Bernoulli shifts

We provide a noncommutative generalization of the Kolmogorov Zero-One Law.
Furthermore we show that conditional factorizability implies strong mixing in the
context of stationarity. This leads us to a noncommutative generalization of classi-
cal Bernoulli shifts.

Theorem 6.1. Let I be an order N -factorizable random sequence where N is a
ψ-conditioned von Neumann subalgebra of Mtail. Then it holds N = Mtail. In
particular, an order C-independent random sequence has a trivial tail algebra.

The last assertion is a noncommutative Kolmogorov Zero-One Law. Note also
that order N -factorizability (CFo) is implied by (CIo), (CF) or (CI).
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Proof. Assume without loss of generality that I is minimal. We show first that

M and Mtail are N -independent. Let a ∈ Mtail and x ∈ Malg
N0

. Thus there exists

some bounded subset J ⊂ N0 such that x ∈ MJ . Because Mtail ⊂ M[n,∞) for
all n ∈ N0, we can assume J < [n,∞). Consequently, the order N -factorizability
implies

EN (ax) = EN (a)EN (x).

Now let x ∈ M. By minimality and Kaplansky’s density theorem, there exists a

bounded sequence (xk)k∈N in Malg
N0

of M such that x = wot- limk xk. Note that,
for all k, we have xk ∈ MJk

with some bounded subset Jk. We conclude that, for
any y ∈ M,

ψ(yEN (ax)) = lim
k
ψ(yEN (axk))

= lim
k
ψ(yEN (a)EN (xk))

= ψ(yEN (a)EN (x)).

This gives the factorization

EN (ax) = EN (a)EN (x) (6.1)

for all a ∈ Mtail and x ∈ M. We claim that this factorization implies the N -
independence of Mtail and M. Indeed, the ψ-preserving conditional EMtail from M
onto Mtail exist since Mtail is globally σψt -invariant. The latter is easily concluded
from the fact that the ranges of the random variables ιn are ψ-conditioned and the
definition of Mtail. We are left to verify that (6.1) extends to elements a ∈ Mtail∨N
and x ∈ M ∨ N . But this is evident, because N ⊂ M and N ⊂ Mtail. Thus M
and Mtail are N -independent.

To prove N = Mtail, we are left to show the inclusion Mtail ⊂ N . We infer from
the N -independence of M and Mtail that Mtail and Mtail are N -independent. We
use the module property of conditional expectations and N -independence to get,
for every x ∈ Mtail,

EN ((x− EN (x))∗(x− EN (x)) = EN (x∗x) − EN (x∗)EN (x) = 0.

Now the faithfulness of EN implies x = EN (x) and thus Mtail ⊂ N .
The last assertion is clear since order C-factorizability and order C-independence

are equivalent (see Definition 4.1. �

Remark 6.2. The assumptions in Theorem 6.1 can be further weakened since an
inspection of its proof shows that only the ranges of the random variables matter. It
suffices that the probability space (M, ψ) is equipped with an order N -factorizable
family of ψ-conditioned von Neumann subalgebras (Mk)k∈N.

It is well-known that the Kolmogorov Zero-One Law implies strong mixing prop-
erties of an independent stationary random sequence. Here we are interested in a
conditioned noncommutative version of this classical result. It is convenient to for-
mulate it in terms of the minimal stationary process M associated to a stationary
random sequence I .

Definition 6.3. A stationary process M or its endomorphism α is said to be
strongly mixing over N if, for any x ∈ M,

wot- lim
n→∞

αn(x) = EN (x).



26 C. KÖSTLER

Here N is a ψ-conditioned von Neumann subalgebra of M.

Theorem 6.4. Let the minimal stationary process M be order N -factorizable for
the ψ-conditioned subalgebra N of Mα. Then α is strongly mixing over N . More-
over we have

N = Mα = Mtail.

In particular, these three subalgebras are trivial if M is order C-independent.

The condition N ⊂ Mα is non-trivial if Mtail 6≃ C (see Remark 6.5).

Proof. Since Mα ⊂ Mtail, we conclude N = Mα = Mtail from Theorem 6.1. We
are left to prove the mixing properties. Suppose x ∈ MI and y ∈ MJ for bounded
sets I, J ⊂ N0. One calculates

lim
n→∞

ψ(y∗αn(x)) = lim
n→∞

ψ(EN (y∗αn(x)))

= lim
n→∞

ψ(EN (y∗)EN (αn(x)))

= ψ(EN (y∗)EN (x))

= ψ(y∗EN (x)).

Here we used that J < (I + n) for n sufficiently large and applied order N -
factorizability to obtain the second equality. The third equality uses that N ⊂ Mα

implies EN ◦ α = EN .
To extend these equations to arbitrary x, y ∈ M, we use the minimality of

the stationary process and approximate x and y by bounded sequences (xi)i and,

respectively, (yi)i from the *-algebra Malg
N0

in the strong operator topology. Since

ψ(y∗αn(x)) = ψ
(
(y − yi)

∗αn(x)
)

+ ψ
(
y∗i α

n(x− xi)
)

+ ψ
(
y∗i α

n(xi)
)

and since the estimates

|ψ
(
(y − yi)

∗αn(x)
)
| ≤ ψ(|y − yi|2)1/2ψ(|x|2)1/2,

|
(
y∗i α

n(x− xi)
)
| ≤ ψ(|yi|2)1/2ψ(|x− xi|2)1/2

are uniform in n, we conclude the convergence of ψ(y∗αn(x)) to ψ(y∗EMtail(x))
by an ε/3-argument. Now the claimed mixing property follows from the norm
density of the functionals {ψ(y · ) | y ∈ M} in M∗ and the boundedness of the set
{αn(x) |n ∈ N0}. �

Remark 6.5. The condition N ⊂ Mα in Theorem 6.4 is non-trivial. Consider
a minimal stationary process M with N = Mtail = M 6≃ C. Then M is N -
factorizable and EN is the identity map on M. Furthermore, α is easily seen to be
an automorphism. It follows from Definition 6.3 that α is strongly mixing over N
if and only if α is the identity.

Remark 6.6. Conditional order factorizability (CFo) is the weakest form of in-
dependence or factorizability introduced in Definition 4.1; thus Theorem 6.1 and
Theorem 6.4 are also valid if (CFo) is replaced by (CF), (CIo) or (CI).

An important class of stationary processes in classical probability are Bernoulli
shifts; and a noncommutative notion of such shifts emerges in [Küm88a] from the
study of stationary quantum Markov processes. Here we are interested in their
amalgamated version, as studied in [Rup95] and, in a bilateral continuous ‘time’
formulation, in [HKK04].
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Definition 6.7. An (ordered/full) Bernoulli shift (over N ) is a minimal stationary
process B = (B, χ, β,B0) with the following properties:

(i) N ⊂ Bα ∩ B0 is a χ-conditioned von Neumann subalgebra;
(ii) the canonical filtration (BI)I⊂N0 is (order/full) N -independent;

The endomorphism β is also called a Bernoulli shift over N with generator B0.

Note that this definition of a Bernoulli shift contains a subtle redundancy: one
could drop the modular condition on the endomorphism β and conclude it from the
fact that its ranges βn(B0) must be χ-conditioned, as required by our definition of
independence. This entails that β commutes with σχt , the modular automorphism
group of (B, χ).

Corollary 6.8. Let M = (M, ψ, α,M0) be a minimal stationary process. Fur-
ther suppose N ⊂ Mα is a ψ-conditioned von Neumann subalgebra and B =
(M, ψ, α,M0 ∨ N ). Then the following are equivalent:

(a) M is (order/full) N -factorizable;
(b) M is (order/full) N -independent;
(c) B is an (ordered/full) Bernoulli shift over N .

In particular, it holds N = Mα = Mtail.

Proof. We already know the equivalence of (a) and (b) from Theorem 4.2. The
equivalence of (b) and (c) is also clear since the family (MI)I⊂N0 is (order/full)
N -independent if and only if the family (MI ∨ N )I⊂N0 is so. We are left to show
N = Mα = Mtail. But this is content of Theorem 6.4. �

We provide next a result which is useful for applications where one wants to
identify a given process as a Bernoulli shift. Suppose M = (M, ψ, α,M0) is an
(order/full) N -factorizable minimal stationary process for some ψ-conditioned von
Neumann subalgebra N ⊂ Mα. Furthermore let C0 be a ψ-conditioned von Neu-
mann subalgebra of M0. Put

B :=
∨

n≥0

αn(C0 ∨N ), χ := ψ|B, β := α|B, B0 := C0 ∨ N .

This defines the minimal stationary process B = (B, χ, β,B0) which is subject of
the next result.

Corollary 6.9. B is an (ordered/full) Bernoulli shift over N and N = Bβ = Btail.

Proof. Theorem 4.2 implies the (order/full) N -independence of M . Since B0 ⊂
M0∨N , (order/full) N -independence is inherited by the minimal stationary process
B. Now an application of Theorem 6.1 to the random sequence associated to B

ensures N = Btail. We are left to prove N ⊂ B0 ∩ Bβ. Clearly N ⊂ B0. Thus it is
suffices to show N = Bβ. Since N = Mα by Theorem 6.4 and N ⊂ B0, we have
Mα ⊂ B0 and consequently Mα ⊂ B. But this implies Bβ = Mα and consequently
N = Bβ. �

Remark 6.10. Our notion of a Bernoulli shift is motivated from Kümmerer’s work
on noncommutative stationary Markov processes in [Küm85, Küm88b, Küm88a,
Küm93, Küm96]. An ordered Bernoulli shift here is the unilateral discrete version
of noncommutative continuous Bernoulli shifts introduced in [HKK04]. Note that
Definition 6.7 of a Bernoulli shift is not restricted to tensor independence; it is
casted in the broader context of conditional independence.
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7. Spreadability implies conditional order independence

The main result of this section is Theorem 7.1 which is an integral part of the
noncommutative extended de Finetti theorem, Theorem 0.2.

Theorem 7.1. A spreadable random sequence I is stationary and order Mtail-
independent.

It is immediate from Definition 1.12 that spreadability implies the stationarity
of a random sequence. Thus we can reformulate Theorem 7.1 in terms of station-
ary processes, as done in Theorem 7.2. Throughout this section, we consider the
minimal stationary process

M ≡ (M, ψ, α,M0)

and, replacing its generator M0 by M0 ∨Mα, the minimal stationary process

B ≡ (M, ψ, α,M0 ∨Mα).

Theorem 7.2. Suppose M is spreadable and minimal. Then M is order Mtail-
independent and Mtail = Mα. In particular, B is an ordered Bernoulli shift.

The proof of Theorem 7.2 needs some preparation and is postponed to the end
of this section. It entails of course the proofs of Theorem 7.1 and Theorem 0.2
(b)⇒(co) through the correspondence stated in Lemma 2.5.

Proposition 7.3. Suppose the minimal stationary process M is spreadable. Then
there exists the ψ-preserving conditional expectation EMtail of M onto Mtail and

wot- lim
n
αn(x) = EMtail(x), x ∈ M.

Moreover, we have Mtail = Mα.

Proof. Let MI :=
∨
n∈I α

n(M0) for I ⊂ N0. Let x, y ∈ ⋃
|I|<∞MI . Consequently

we can assume x ∈ MI and y ∈ MJ such that there exists N ∈ N with I∩(J+N) =
∅. We infer from spreadability that ψ(yαn(x)) = ψ(yαn+1(x)) for all n ≥ N . Due
to minimality this establishes the limit

lim
n→∞

ψ(yαn(x))

on the wot-dense *-algebra
⋃

|I|<∞ MI . A standard approximation argument

ensures now the existence of this limit for x, y ∈ M, using the norm density of the
functionals {ψ(y·) | y ∈ M} and the boundedness of the set {αn(x) |n ∈ N}. We
conclude from this that the pointwise wot-limit of the sequence (αn)n defines a
linear map Q : M → M such that Q(M) ⊂ Mtail.

It is easily seen that the linear map Q enjoys

ψ = ψ ◦Q and ‖Q(x)‖ ≤ ‖x‖ for x ∈ M.

Thus Q is a conditional expectation from M onto Mtail, if we can insure that
Q(x) = x for all x ∈ Mtail. To this end let x ∈ Mtail and y ∈ ⋃

|I|<∞ MI . We

infer from Mtail ⊂ αN (M) and M[N,∞) ⊂ αN (M) for all N ∈ N that there exists

some N ∈ N such that x ∈ αN (M) and y ∈ M[0,N−1]. We approximate x ∈ M in

the wot-sense by a sequence (xk)k ⊂ ⋃
|I|<∞ αN (MI) and conclude further from
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the definition of Q and from spreadability that

ψ(yQ(x)) = lim
k
ψ(yQ(xk)) = lim

k
lim
n
ψ(yαn(xk))

= lim
k
ψ(yxk) = ψ(yx).

This shows that Q(x) = x for all x ∈ Mtail. Thus Q is the conditional expectation
of M onto Mtail with respect to ψ (see [Tak03, Chapter IX, Definition 4.1]), which
we denote from now on by EMtail .

We need to identify the tail algebra as the fixed point algebra. Proposition 7.3
gives pointwise EMtailEMα = wot- limn α

nEMα = EMα and thus Mα ⊂ Mtail.
The inclusion Mtail ⊂ Mα follows from αEMtail = limn αα

n = EMtail in the
pointwise wot-sense. �

Remark 7.4. The proof of Proposition 7.3 shows that the ψ-preserving conditional
expectation onto the tail algebra Mtail and the fixed point algebra Mα of the
endomorphism α exist under weaker assertions. One does not need that α and the

modular automorphism group σψt commute (this compatibility condition is required
in Definition 2.1).

It is convenient to use Speicher’s notion of multilinear maps also for the endo-
morphism α. we put

α[i;a] := αi(1)(a1)α
i(2)(a2) · · ·αi(n)(an)

for n-tuples i : [n] → N0 and a = (a1, a2, . . . , an) ∈ M0.

Definition 7.5. A stationary process M = (M, ψ, α,M0) or its endomorphism α
is N -spreadable if there exists a ψ-conditioned von Neumann subalgebra N of M
such that

EN (α[i;a]) = EN (α[j;a])

for any n ∈ N, i, j : [n] → N0 with i ∼o j and a ∈ Mn
0 .

Lemma 7.6. The following are equivalent for a minimal stationary process M :

(a) M is spreadable;
(b) M is Mtail-spreadable;
(c) M is Mα-spreadable.

Proof. (b) and (c) are equivalent since Mtail = Mα by Proposition 7.3. Obviously
(b) implies (a) and we are left to prove the converse. Let us first treat the case
Mtail ⊂ M0. We already know Mtail = Mα from Proposition 7.3. Consider the
n-tuple (ax1, x2, . . . , xn) ∈ Mn

0 with a ∈ Mα. We conclude from this that, for
i, j : [n] → N0 with i ∼o j,

ψ
(
aα[i;x1, x2, . . . , xn]

)
= ψ

(
α[i; ax1, x2, . . . , xn]

)
= ψ

(
α[j; ax1, x2, . . . , xn]

)

= ψ
(
aα[j;x1, x2, . . . , xn]

)
.

Using ψ = ψ ◦ EMtail and the module property of EMtail , we conclude that α is
conditionally Mtail-spreadable by standard arguments.

The more general case Mtail 6⊂ M0 is treated similar. We approximate a ∈ Mtail

by a sequence (ak)k≥0 ⊂ M such that

ak ∈
⋃

l≥k

αl(M0) and a = sot- lim
k→∞

ak.
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Thus we can assume that each ak is a linear combination of monomials α[ik;ak],
for some nk-tuple ik : [nk] → {k, k + 1, . . .} and a ∈ Mnk

0 . Now we compute as
before that, for i, j : [n] → N0 with i ∼o j and sufficiently large k,

ψ
(
α[ik;ak]α[i;x1, x2, . . . , xn]

)
= ψ

(
α[ik;ak]α[j;x1, x2, . . . , xn]

)
.

This equality extends by linearity and weak* density arguments to

ψ
(
aα[i;x1, x2, . . . , xn]

)
= ψ

(
aα[j;x1, x2, . . . , xn]

)

for every a ∈ Mtail. We conclude from this the Mtail-spreadability of the stationary
process. �

Lemma 7.7. Suppose M be a minimal stationary process. If M is spreadable,
then M is order Mtail-factorizable.

Proof. We need to show that the canonical filtration (MI)I⊂N0 satisfies the factor-
ization rule

EMtail(xy) = EMtail(x)EMtail (y)

for all x ∈ MI and y ∈ MJ whenever I < J or I > J . Let x ∈ Malg
I and y ∈ Malg

J .
Then, for all n ∈ N0,

EMtail(xy) = EMtail(xαn(y)),

since spreadability implies Mtail-spreadability (Lemma 7.6). We use the mixing
properties of α (Proposition 7.3) to conclude

EMtail(xy) = wot- lim
n→∞

EMtail(xαn(y)) = EMtail(x)EMtail (y).

This establishes the order Mtail-factorizability of a spreadable stationary process.
�

Proof of Theorem 7.2. Lemma 7.7 shows that M is order Mtail-factorizable and
Proposition 7.3 insures Mtail = Mα. Thus Theorem 4.2 applies for N = Mtail and
ensures that M is conditionally Mtail-independent. Finally, Corollary 6.8 entails
that B is an ordered Bernoulli shift over Mtail. �

8. Spreadability implies conditional full independence

We have already shown in the previous section that spreadability implies condi-
tional order independence. Here this result will be strengthened to conditional full
independence.

Theorem 8.1. A spreadable random sequence I is stationary and full Mtail-
independent.

Theorem 8.1 establishes the implication (b) ⇒ (c) of Theorem 0.2, the noncom-
mutative extended de Finetti theorem. We will prove it in terms of the correspond-
ing stationary process M = (M, ψ, α,M0) and, replacing the generator M0 by
M0 ∨Mα, denote by B the stationary process (M, ψ, α,M0 ∨Mα).

Theorem 8.2. Suppose M is spreadable and minimal. Then M is full Mtail-
independent and Mtail = Mα. In particular, B is a full Bernoulli shift.

The proofs of Theorem 8.1 and Theorem 8.2 require a certain refined version
of the mean ergodic theorem. Let us start with its usual formulation and include
for the convenience of the reader how its proof reduces to the usual result for
contractions on Hilbert spaces.
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Theorem 8.3. Let (M , ψ) be a probability space and α a ψ-preserving endomor-
phism of M. Then we have, for each x ∈ M,

sot- lim
n→∞

1

n

n−1∑

k=0

αk(x) = EMα(x).

Proof. The strong operator topology and the ψ-topology generated by the maps
x 7→ ψ(x∗x)1/2, x ∈ M, coincide on norm bounded sets in M. Thus this mean
ergodic theorem is an immediate consequence of the usual mean ergodic theorem
in Hilbert spaces (see [Pet83, Theorem 1.2] for example). �

This mean ergodic theorem would allow us to give an alternative proof of that
spreadability implies conditional order independence (CIo), after having identified
the tail algebra as the fixed point algebra of the stationary process in Proposition
7.3 and established conditional spreadability in Lemma 7.6.

We illustrate this by an example. Given the stationary process (M, ψ, α,M0),
let a, b ∈ M0 and consider

M{1,2} ∋ x = α(a)α2(a)α(a)α2(a),

M{3,4} ∋ y = α4(b)α3(b)α4(b)α3(b)α4(b).

We have {1, 2} < {3, 4} and thus spreadability implies

EMα(xy) = EMα

(
xαn(y)

)
= EMα

(
x

1

n

n−1∑

k=0

αk(y)
)

for all n ≥ 1. Thus Theorem 8.3 implies EMα(xy) = EMα(x)EMα (y).
But such an argument falls short of establishing the apparently stronger version,

conditional full independence (CI). For example, consider the two elements

x = α(a)α3(a)α(a)α3(a),

y = α4(b)α2(b)α4(b)α2(b)α4(b),

Thus we have x ∈ MI and y ∈ MJ with I = {1, 3} and J ∈ {2, 4}. Since the
tuples (1, 3, 1, 3, 4, 2, 4, 2, 4) and (1, 3, 1, 3, 4 + n, 2 + n, 4 + n, 2 + n, 4 + n) are order
equivalent if and only if n = 0, the previous arguments fails. We observe that
spreadability implies, in particular,

EMα(xy) = EMα

(
xα4+n(b)α2(b)α4+n(b)α2(b)α4+n(b)

)

= EMα

(
x

1

n

n−1∑

k=0

α4+k(b)α2(b)α4+k(b)α2(b)α4+k(b)
)
.

but a direct application of the mean ergodic theorem is still out of reach.
To overcome such difficulties we need to provide a more elaborated version of

Theorem 8.3 which allows us to preserve relative localisation properties of the
canonical filtration (MI)I while performing mean ergodic averages. Since this
result is of interest in its own, we formulate it in greater generality as necessary for
our purposes.

Theorem 8.4. Let (M, ψ) be a probability space and suppose {αN}N∈N0 is a family
of ψ-preserving completely positive linear maps of M satisfying

(i) MαN ⊂ MαN+1 for all N ∈ N0;
(ii) M =

∨
N∈N0

MαN .
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Furthermore let

M
(n)
N :=

1

n

n−1∑

k=0

αkN and TN :=
~∏N

l=0
αlNl M

(N)
l .

Then we have
sot- lim

N→∞
TN(x) = EMα0 (x)

for any x ∈ M.

Proof. Since the family {TN |N ∈ N0} is bounded, its pointwise sot-convergence
follows by a standard approximation argument if we can establish this convergence
on the weak*-dense *-subalgebra

⋃
N∈N0

MαN of M.

Let x ∈ MαN0 for some N0 ∈ N and N ≥ N0. Since αN (x) = x and thus

M
(n)
N (x) = x, the ordered product has at most N0 non-trivially acting factors:

TN(x) =
( ~∏N

l=0
αlNl M

(N)
l

)
(x) =

( ~∏N0−1

l=0
αlNl M

(N)
l

)
(x).

The assertions on the fixed point algebras Mαk imply that, for any k ≤ N and
n ∈ N,

EMαkαN = EMαk and EMαkM
(n)
N = EMαk .

Thus we can rewrite TN (x) as a finite telescope sum, assuming N ≥ N0:

TN(x) = M
(N)
0 αN1 M

(N)
1 α2N

2 M
(N)
2 · · ·αN2

N M
(N)
N (x)

= M
(N)
0 αN1 M

(N)
1 α2N

2 M
(N)
2 · · ·α(N0−1)N

N0−1 M
(N)
N0−1(x)

=
( ~∏N0−1

l=0
αlNl (M

(N)
l − EMαl )

)
EM

αN0 (x)

+
( ~∏N0−2

l=0
αlNl (M

(N)
l − EMαl )

)
EM

αN0−1 (x)

+
( ~∏N0−3

l=0
αlNl (M

(N)
l − EMαl )

)
EM

αN0−2 (x)

+ · · ·
+ (M

(N)
0 − EMα0 )αN1 (M

(N)
1 − EMα1 )EMα2 (x)

+ (M
(N)
0 − EMα0 )EMα1 (x)

+ EMα0 (x).

The strong operator topology and the ψ-topology generated by x 7→ ‖x‖2
ψ := ψ(x∗x)

coincide on bounded sets of M. Thus∥∥∥∥
( ~∏k−1

l=0
αlNl (M

(N)
l − EMαl )

)
EMαk (x)

∥∥∥∥
ψ

≤ 2k−1
∥∥∥(M

(N)
k−1 − EMαk−1 )EMαk (x)

∥∥∥
ψ
,

and the usual mean ergodic theorem, Theorem 8.3, entail that all terms of above
telescope sum, except EMα0 (x), vanish in the limit N → ∞. �

We will connect this refined mean ergodic theorem to partial shifts which canoni-
cally emerge from a spreadable endomorphism. Recall for this purpose the notion of
partial shifts θN of N0 and their relation to order invariance of tuples (see Remark
1.9):

θN (n) =

{
n if n < N ;

n+ 1 if n ≥ N.
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Clearly θN is an order preserving map of N0 into itself and so are the compositions
of such maps with N ∈ N0. Here we are interested in compositions of the type

θN,~lN :=
~∏N

i=0
θiN+li
i = θl00 θ

N+l1
1 θ2N+l2

2 · · · θ(N−1)N+lN−1

N−1 θN
2+lN

N ,

where
~lN = (l0, l1, . . . , lN ) ∈ {0, 1, . . . , N − 1}N+1.

Note that the θi’s in the ordered product do not commute for different i’s. We
record two simple, but crucial properties of this composition.

Lemma 8.5. For any (N + 1)-tuples ~lN , ~kN ∈ {0, 1, . . . , N − 1}N+1, it holds

θN,~lN (i) < θN,~kN
(j) whenever i < j < N , and

θN,~lN (I) ∩ θN,~kN
(J) = ∅ whenever I ∩ J = ∅ and max I ∪ J < N .

Proof. Since all θN ’s are order preserving, it suffices to consider j = i + 1. One
calculates

θN,~lN (i+ 1) − θN,~lN (i) = 1 +

i∑

j=0

(kj − lj) +
(
(i+ 1)N + ki+1

)
> 0.

Moreover this ensures that the images of disjoint sets I, J (bounded by N) are
disjoint. �

Suppose for the remainder of this section that the stationary process M =
(M, ψ, α,M0) is minimal and let, for N ∈ N,

MN−1 :=
∨

0≤k<N

αk(M0).

Spreadability of M allows us to promote the partial shifts θN of N0 to endomor-
phisms of M. Let

α[i;a] := αi(1)(a1)α
i(2)(a2) · · ·αi(n)(an)

for n-tuples i : [n] → N0 and a = (a1, a2, . . . , an) ∈ Mn
0 .

Lemma 8.6. Suppose the endomorphism α of M is spreadable and let N ∈ N0.
Then the complex linear extension of the map

α[i;a] 7→ α[θN ◦ i;a]

defines a ψ-preserving unital endomorphism αN of M, such that

MN ⊂ MαN+1.

In particular, MN := (M, ψ, αN ,MN) is a minimal stationary process.

Proof. The map αN is well-defined on the *-algebra Malg
N0

, the C-linear span of
monomials α[i;a]. Indeed, the faithfulness of ψ and spreadability give

∑

k

α[θN ◦ ik;ak] = 0 ⇔ ψ
(∣∣∑

k

α[θN ◦ ik;ak]
∣∣2

)
= ψ

(∣∣ ∑

k

α[ik;ak]
∣∣2

)
= 0

⇔
∑

k

α[ik;ak] = 0.

Thus αN is well-defined on Malg
N0

. Now it is routine to check that αN extends to a ψ-
preserving unital endomorphism of M, denoted by the same symbol. The inclusion
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MN−1 ⊂ MαN is immediately concluded by approximation from the definition of

αN on Malg
N0

. It is also clear that αN commutes with the modular automorphism

group of (M, ψ) since α does so. Thus (M, ψ, αN ,MN ) is a stationary process
which is easily seen to be minimal. �

Corollary 8.7. The minimal stationary processes MN and their endomorphisms
αN are spreadable. Moreover, it holds for N ∈ N0:

(i) αN+1|αN (M) = αN |αN (M);
(ii) MαN ⊂ MαN+1 ;
(iii) M =

∨
N∈N0

MαN .

Proof. The spreadability of MN is immediate from definition of αN in Lemma 8.6
and the spreadability of α.

(i) Clearly, θN+1|θN (N0) = θN |θN (N0). Thus αN+1 and αN coincide on the C-

linear span of all monomials of the form α[θN ◦ i;a] = αN

(
α[i;a)]

)
. Now the

assertion follows from the weak*-density of this span in αN (M).
(ii) MαN is contained in αN (M). By (i), αN and αN+1 coincide on αN (M).

Thus MαN ⊂ MαN+1.
(iii) This is evident from the minimality of M since

∨
0≤n<N α

n(M0) ⊂ MαN

by Lemma 8.6. �

Remark 8.8. We do not know at the time of this writing if the fixed point algebras
MαN can be identified as MαN =

∨
0≤n<N α

n(M0) ∨Mα.

Proof of Theorem 8.2. We need to show that

EMα(xy) = EMα(x)EMα(y)

for all x ∈ MI and y ∈ MJ with I ∩J = ∅. We start with disjoint finite sets I and
J , and elements of the form

x = α[i;a] and y = α[j;b],

for p-tuples i : [p] → I, a ∈ Mp
0 and q-tuples j : [q] → J , b ∈ Mq

0.
Recall that Mα is Mα-spreadable by Lemma 7.6 and so

EMα0 (xy) = EMα

(
α[i;a]α[j;b]

)

= EMα

(
α[θN,~kN

◦ i;a]α[θN,~kN
◦ j,b]

)

for any ~kN ∈ {0, 1, . . . , N − 1}N+1 and N > max I ∪ J . By Lemma 8.5, the maps
θN,~kN

are order preserving on N0 and I ∩J = ∅ implies θN,~kN
(I)∩ θN,~lN (J) = ∅ for

any (N + 1)-tuples ~kN ,~lN ∈ {0, 1, . . . , N − 1}N+1. Thus

EMα

(
α[i;a]α[j;b]

)
= EMα

(
α[θN,~kN

◦ i;a]α[θN,~lN ◦ j,b]
)

for all ~kN ,~lN . Consequently we can pass on the right side of this equation to the
mean ergodic averages by summing over the variables k0, k1, . . . , kN and l0, l1, . . . lN .
Doing so we find

EMα

(
α[i;a]α[j;b]

)
= EMα

(
TN(α[i;a])TN (α[j;b])

)
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for all N > max I ∪ J , where

TN :=
~∏N

l=0
αlNl M

(N)
l with M

(n)
N :=

1

n

n−1∑

k=0

αkN .

Since Corollary 8.7 ensures that all assumptions of the refined mean ergodic theorem
Theorem 8.4 are satisfied, the pointwise sot-convergence of TN to EMα0 (= EMα)
for N → ∞ establishes

EMα

(
α[i;a]α[j;b]

)
= EMα

(
α[i;a]

)
EMα

(
α[j;b]

)

for any i and j with disjoint ranges. This generalizes to the C-linear span of mono-
mials α[in;an] and α[jn;bn], provided the range of the tuples in is contained in I
and the range of the tuples jn is contained in J . Now a density argument establishes
the factorization

EMα(xy) = EMα(x)EMα(y)

for all x ∈ MI and y ∈ MJ whenever I and J are finite disjoint subsets of N0.
Finally, another approximation removes the assumption of the finiteness of I and
J . Thus we have established that the spreadability of a minimal stationary process
M implies its full Mα-factorizability.

By Theorem 4.2, full Mα-factorizability and full Mα-independence are equiv-
alent. In particular, we know already Mα = Mtail from Theorem 7.2. Finally,
Corollary 6.8 entails that B is a full Bernoulli shift. �

Remark 8.9. The refined version of the mean ergodic theorem, Theorem 8.4, is
motivated in parts from product representations of endomorphisms as their study
is started in [Goh04] and as they are applied to braid group representations in
[GK08]. Suppose the probability space (M, ψ) is equipped with a tower

M0 ⊂ M1 ⊂ M2 ⊂ · · ·
of ψ-expected subalgebras such that M =

∨
n≥0 Mn and consider a family of

automorphisms (γk)k∈N ⊂ Aut(M, ψ) satisfying

γk(Mn) = Mn if k ≤ n

γk|Mn−1 = id |Mn−1 if k ≥ n+ 1.

Then

αN := lim
n→∞

γN+1 · · · γn
exists in the pointwise strong operator topology and defines a family of ψ-preserving
endomorphisms {αN}N∈N0 of M such that MN ⊂ MαN ⊂ MαN+1 for all N ∈ N0.

Suppose now in addition that

αN |αk
0(M) = α0|αk

0 (M) if k ≥ N.

Then it can be seen that the refined mean ergodic theorem preserves localization
properties with respect to the filtration (AI)I⊂N0 , where AI :=

∨
i∈I α

i
0(M0). To

be more precise, suppose x ∈ AI and y ∈ AJ with I ∩ J = ∅. Then for every N ,
there exist sets IN , JN with IN ∩JN = ∅ such that TN(x) ∈ AIN

and TN(y) ∈ AJN
.

Such a feature turned out to be crucial for the proof that spreadability implies
conditional full independence.
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9. Some applications and outlook

We briefly address some further developments and applications of Theorem 0.2.

9.1. A glimpse on braidability. The Artin’s braid group B∞ is presented by the
generators σ1, σ2, . . ., subject to the relations

σiσjσi = σjσiσj if | i− j |= 1,

σiσj = σjσi if | i− j |> 1.

Bn is an important extension of the symmetric group Sn and we introduce in [GK08]
‘braidability’ as a notion which extends exchangeability.

Definition 9.1. A random sequence I with random variables

ι ≡ (ιn)n≥0 : (A0, ϕ0) → (M, ψ)

is ρ-braidable if there exists a representation ρ : B∞ → Aut(M, ψ) satisfying:

ιn = ρ(σnσn−1 · · ·σ1)ι0 for all n ≥ 1;

ι0 = ρ(σn)ι0 if n ≥ 2.

Note that the representation ρmay be non-faithful and comprises representations
of S∞. More precisely, it is shown in [GK08] that the following are equivalent:

(i) I is exchangeable;
(ii) I is ρ-braidable and ρ(σ2

n) = id for all n ∈ N.

So exchangeability clearly implies braidability. A main result of [GK08] is that
braidability is intermediate between two distributional symmetries and thus pro-
vides a refinement of the noncommutative extended de Finetti theorem, Theorem
0.2:

Theorem 9.2 ([GK08]). Let I be an infinite random sequence and consider the
following statements:

(a) I is exchangeable;
(ab) I is braidable;
(b) I is spreadable;
(c) I is stationary and full Mtail-independent.

Then we have the implications:

(a) ⇒ (ab) ⇒ (b) ⇒ (c)

Starting from braid group representations, this result implies a rich structure
of triangular arrays of commuting squares, similar as they emerge from the Jones
fundamental construction in subfactor theory. We refer the interested reader to
[GK08] for further details and developments.

We need another result from [GK08] to complete the proof of Theorem 0.2.

Theorem 9.3 ([GK08]). There exist examples of infinite random sequences such
that the implications (a) ⇐ (b)’ and ‘(b) ⇐ (c)’ fail in Theorem 0.2 resp. Theorem
9.2.

Proof. See Theorem 5.6, Theorem 5.9, Example 6.1 and Example 6.4 in [GK08]. �
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9.2. The prototype of a noncommutative conditioned central limit law.

Another immediate application of Theorem 0.2 is given by noncommutative cen-
tral limit theorems. They are an integral component of quantum probability
[CH71, Hud73, GvW78, vW78, Qua84] and free probability [Voi85, Voi86, Spe90,
Voi91, VDN92]. Unified general versions of them are obtained in the setting of
*-algebraic probability spaces in [Spe92, SvW94] and the related algebraic tech-
niques are of growing interest in operator algebras. Especially Speicher’s inter-
polation technique for q-commutation relations [Spe92] is successfully applied for
results on hypercontractivity in [Bia97, Kem05] and the embedding of Pisier’s oper-
ator Hilbert space OH into the predual of the hyperfinite III1 factor due to Junge
[Jun06].

To control the existence of a limit distribution in a *-algebraic setting, general
limit theorems need to stipulate three more or less technical conditions on mixed
moments of the random variables: a singleton condition, a growth condition and
some appropriate form of order-invariance condition on second order correlations
[SvW94]. These three conditions have been replaced by two conditions in [KS07]
when working with tracial W*-algebraic probability spaces: a growth condition
and order-invariance (which equals ‘spreadability’ herein). This leads to precise
formulas for the higher moments of additive flows with stationary independent in-
crements whenever they are spreadable. An application of Theorem 0.2 allows us
to show that additive flows with spreadable increments have automatically inde-
pendent stationary increments. In particular, one obtains for such additive flows
a noncommutative generalization of [Kal05, Theorem 1.15], the continuous version
of the extended de Finetti theorem. Related results will be published elsewhere.

Let us present here only a simple version of the central limit theorem for spread-
able random sequences, the ‘discrete time’ analogue of spreadable additive flows.
We need to introduce some notation for its formulation.

Let O(p) denote the set of equivalence classes [i] for p-tuples i : {1, 2, . . . , p} → N0

under the following equivalence relation: two p-tuples i and j are order equivalent
if

i(k) ≤ i(l) ⇔ j(k) ≤ j(l) for all k, l = 1, . . . , p.

Furthermore, let

O2(p) := {[i] ∈ O(p) | |i−1(k)| ∈ {0, 2}, k ∈ N0},
the set of all equivalence classes of p-tuples with pair partitions as pre-image and
let P2(p) denote the set of all pair partitions of {1, 2, · · · , p}. Note that P2(p) has
the cardinality p !! = (p− 1)(p− 3) · · · 5 · 3 · 1 for p even and p !! = 0 for p odd and
that |O2(p)|, the cardinality of O2(p), satisfies

p !! =
|O2(p)|
(p/2)!

.

The following result can be easily deduced from [KS07, Theorem 4.4], since
condition (d) of Theorem 0.2 implies the vanishing of so-called ‘singletons’.

Theorem 9.4. Let the spreadable random sequence I be given by the random
variables (ιn)n≥0 : (M0, ψ0) → (M, ψ) and consider

SN (x) :=
1√
N

N−1∑

n=0

ιn(x)
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for some fixed x ∈ M0 with EMtail(x) = 0. Then

lim
N→∞

ψ(SN (x)p) = p !! · ap(x)

with the average

ap(x) :=





1

|O2(p)|
∑

[i]∈O2(p)

ψ
(
ιi(1)(x)ιi(2)(x) · · · ιi(p)(x)

)
for even p,

0 for odd p.

This result can be regarded as the prototype of a noncommutative version of
conditional central limit theorems in classical probability. We refer the reader to
[DM02] for more information on this matter. Note also that above theorem can be
promoted to an operator equation:

sot- lim
N→∞

EMtail(SN (x)p) = p !! ·Ap(x)

with the average

Ap(x) :=





1

|O2(p)|
∑

[i]∈O2(p)

EMtail

(
ιi(1)(x)ιi(2)(x) · · · ιi(p)(x)

)
for even p,

0 for odd p.

Let us discuss more in detail the example that the ιk(x)’s mutually commute for
fixed x. Then the averages a2p(x) and A2p(x) can be easily computed by Theorem
0.2 and the module property of conditional expectations:

a2p(x) = ψ
(
EMtail(x2)p

)
,

A2p(x) = EMtail(x2)p.

If the tail algebra Mtail is trivial, we obtain the normal distribution as central limit
law, since then a2p(x) = ψ(x2)p = a2(x)

p and thus

lim
N→∞

ψ(SN (x)2p) = (2p)!! · a2(x)
p.

But if Mtail is non-trivial, the limit law is different from the normal distribution;
it is a mixture of them.

There seems to be an interesting connection to interacting Fock space models (as
introduced in [AB98, ACL05]) in the conditional case. Given x∗ = x ∈ M0 with
EMtail(x) = 0 and EMtail(x2) 6= 0 in the setting of above example, there exists a
monotone increasing sequence (λ2p)p with λ2 = 1 such that, for all p,

a2p(x) = λ2pa2(x)
p

Here the properties of (λ2p)p are deduced from the fact that Lp(Mtail, ψ|Mtail)
isomorphic to a classical Lp-space (w.r.t. some probability measure). Now λ2p+2 ≥
λ2p is concluded from the monotony of the Lp-norms.

Already this simple class of examples hints at that non-trivial tail algebras lead
to interesting examples of interacting Fock space models through central limit tech-
niques, such that the limit object ‘limN→∞ SN (x)’ reappears as the sum of creation
and annihilation operator on an appropriately chosen interacting Fock space.

Moreover, it is worthwhile to mention that the central limit law is Wigner’s
semicircle law if the averages ap(x) are connected to the second order moment
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ψ(x2) by the formula

a2p(x) =
Cp

(2p)!!
ψ(x2)p,

whenever EMtail
(x) = 0 and ψ(x2) 6= 0. Here Cp denotes the p-th Catalan number.

The amazing analogy of results in classical probability and free probability
prompts of course the question if the condition

A2p(x) =
Cp

(2p)!!
EMtail(x2)p

can be better understood in the context of freeness with amalgamation.
At this stage of our knowledge we regard it to be of major interest to identify

concrete central limit laws which can emerge from spreadable random sequences.
This line of research is continued in [GK08], where we will investigate central limit
laws in the context of braid group representations as stated in Theorem 9.2. At the
time of this writing we have strong numerical evidence that the spectral distribu-
tions of q-Gaussian random variables are among the central limit laws for random
sequences constructed on simple examples of Jones towers on the hyperfinite II1
factor.

9.3. Noncommutative Lp-inequalities for spreadable random sequences.

As a third application we address Junge’s L1-inequality for systems of independent,
conditioned top-subsymmetric copies of a von Neumann algebra [Jun06, Theorem
1.1]. Top-subsymmetry is a slight generalization of subsymmetry or, in our formula-
tion, spreadability. By Theorem 0.2, the assertion of independence can be dropped
in the context of spreadability.

Given the random sequence I , we identify the probability space (A0, ψ0) with
(M0, ψ0) := (ι0(A0), ψ|ι0(A0)) and thus have ι0(x) = x for all x ∈ M0. The

endomorphisms ιk extend to isometric embeddings from L1(M0) into L1(M), the
Haagerup L1-spaces, and are denoted by the same symbol. Similarly, the state-
preserving conditional expectation from M onto Mtail extends to a projection from
L1(M) onto L1(Mtail), in the following just denoted by E. We refer the reader
for further information on the technical details to [Jun06] and the references cited
therein. The main inequality of [Jun06] can now be reformulated as follows. We
are indebted to Junge who pointed out to the author this immediate reformulation.

Theorem 9.5. Suppose I is a spreadable random sequence with above identifica-
tion and let x ∈ L1(M0) with E(x) = 0. Then, for all n ∈ N,

∥∥∥∥∥

n−1∑

k=0

ιk(x)

∥∥∥∥∥
1

∼ inf
x=x1+x2+x3

n
∥∥x1

∥∥
1

+
√
n
∥∥E(x∗2x2)

1/2
∥∥

1
+
√
n
∥∥E(x3x

∗
3)

1/2
∥∥

1
.

Here a ∼ b means that there exists an absolute constant c > 0 such that c−1a ≤
b ≤ ca. This constant is independent of n and x in the above stated theorem. A
corollary of this inequality is the following estimate:

lim
n→∞

∥∥∥∥∥
1√
n

n−1∑

k=0

ιk(x)

∥∥∥∥∥
1

∼ inf
x=x2+x3

∥∥E(x∗2x2)
1/2

∥∥
1

+
∥∥E(x3x

∗
3)

1/2
∥∥

1
.

Of course, a further immediate application is given by noncommutative Rosen-
thal inequalities of Junge and Xu [JX03]. They established the noncommutative
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version of inequalities for the p-norm of independent mean-zero random variables
found by Rosenthal [Ros70]. With Theorem 0.2 at our hands, spreadable random
sequences produce a rich class of new examples. The noncommutative Rosenthal
inequalities are even of interest for independent copies of a single random variable
since we have still a very incomplete picture on the resulting central limit laws.

Theorem 9.6. Let 2 ≤ p <∞. Suppose I is a spreadable random sequence and let
(xn)n≥0 ⊂ Lp(M0) with E(xn) = 0 for all n. Then there exist universal constants
δp and ηp such that,

δ−1
p sp,n(x) ≤

∥∥∥∥∥

n−1∑

k=0

ιk(xk)

∥∥∥∥∥
p

≤ ηp sp,n(x),

where

sp,n(x) = max

{
‖
( n−1∑

k=0

|ιk(xk)|p
)1/p‖p, ‖

( n−1∑

k=0

E(x∗kxk)
)1/2‖p, ‖

( n−1∑

k=0

E(xkx
∗
k)

)1/2‖p
}
.

We note that a similar inequality is valid for 1 < p < 2 (see [JX03, Theorem
6.1]). In the special case of constant selfadjoint sequences, i.e. xn = x, the above
inequality yields

lim
n→∞

∥∥ 1√
n

n−1∑

k=0

ιk(x)
∥∥
p
∼p max

{
‖E(x∗x)1/2‖p, ‖

(
E(xx∗)1/2‖p

}
.

Here a ∼p b means that there exists a constant cp such that c−1
p a ≤ b ≤ cpa.
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[Küm03] B. Kümmerer. Stationary processes in quantum probability. In Quantum
probability communications, volume XI of QP-PQ, XI, pages 273–304,
River Edge, NJ, 2003. Grenoble, 1998, World Sci. Publishing.



NONCOMMUTATIVE EXTENDED DE FINETTI THEOREM 43

[Leh03] F. Lehner. Cumulants in noncommutative probability theory II. Gen-
eralized Gaussian random variables. Probab. Theory Related Fields,
127(3):407–422, 2003.

[Leh04] F. Lehner. Cumulants in noncommutative probability theory I. Non-
commutative exchangeability systems. Math. Z., 248(1):67–100, 2004.

[Leh05] F. Lehner. Cumulants in noncommutative probability theory III. Cre-
ation and annihilation operators on Fock spaces. Infin. Dimens. Anal.
Quantum Probab. Relat. Top., 8(3):407–437, 2005.

[Leh06] F. Lehner. Cumulants in noncommutative probability theory IV. Non-
crossing cumulants: De Finetti’s theorem and Lp-inequalities. J. Funct.
Anal., 239:214–246, 2006.

[NS06] A. Nica and R. Speicher. Lectures on the combinatorics of free proba-
bility, volume 335 of London Mathematical Society Lecture Note Series.
Cambridge University Press, 2006.

[Ped79] G.K. Pedersen. C*-Algebras and their Automorphism Groups. Academic
Press, 1979.

[Pet83] K. Petersen. Ergodic Theory. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, Cambridge, 1983.

[Pop83a] S. Popa. Maximal injective subalgebras in factors associated with free
groups. Adv. in Math., 50:27–48, 1983.

[Pop83b] S. Popa. Orthogonal pairs of *-subalgebras in finite von Neumann alge-
bras. J. Operator Theory, 9:253–268, 1983.

[PP86] M. Pimsner and S. Popa. Entropy and index for subfactors. Ann. Sci.
Ec. Norm. Sup., 19:57–106, 1986.

[Qua84] J. Quaegebeur. A noncommutative central limit theorem for CCR-
algebras. J. Funct. Anal., 57(1):1–20, 1984.

[RN57] C. Ryll-Nardzewski. On stationary sequences of random variables and
the de finetti’s equivalence. Colloq. Math., 4:149–156, 1957.

[Ros70] H.P Rosenthal. On the subspaces of Lp p > 2 spanned by sequences of
independent random variables. Israel J. Math., 8:273–303, 1970.

[Rup95] C. Rupp. Non-Commutative Bernoulli Shifts on Towers of von Neumann
Algebras. PhD thesis, Univ. Tübingen, 1995. Dissertation.
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